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ABSTRACT

Large content providers build points of presence around the world,
each connected to tens or hundreds of networks. Ideally, this con-
nectivity lets providers better serve users, but providers cannot
obtain enough capacity on some preferred peering paths to han-
dle peak traffic demands. These capacity constraints, coupled with
volatile traffic and performance and the limitations of the 20 year
old BGP protocol, make it difficult to best use this connectivity.

We present Edge Fabric, an SDN-based system we built and
deployed to tackle these challenges for Facebook, which serves
over two billion users from dozens of points of presence on six
continents. We provide the first public details on the connectivity
of a provider of this scale, including opportunities and challenges.
We describe how Edge Fabric operates in near real-time to avoid
congesting links at the edge of Facebook’s network. Our eval-
uation on production traffic worldwide demonstrates that Edge
Fabric efficiently uses interconnections without congesting them
and degrading performance. We also present real-time performance
measurements of available routes and investigate incorporating
them into routing decisions. We relate challenges, solutions, and
lessons from four years of operating and evolving Edge Fabric.
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1 INTRODUCTION

Internet traffic has very different characteristics than it did a decade
ago. The traffic is increasingly sourced from a small number of large
content providers, cloud providers, and content delivery networks.
Today, ten Autonomous Systems (ASes) alone contribute 70% of the
traffic [20], whereas in 2007 it took thousands of ASes to add up to
this share [15]. This consolidation of content largely stems from
the rise of streaming video, which now constitutes the majority
of traffic in North America [23]. This video traffic requires both
high throughput and has soft real-time latency demands, where
the quality of delivery can impact user experience [6].

To deliver this high-volume, demanding traffic and improve
user-perceived performance and availability, these providers have
reshaped the Internet’s topology. They serve their users from nu-
merous Points of Presence (PoPs) spread across the globe [3], where
they interconnect with multiple other ASes [15]. A PoP generally
has multiple paths available to reach a user network, increasing the
likelihood that it has a “short” path [5]. This rich interconnectivity
gives providers control over larger portions of the paths [15] and
in aggregate provides necessary capacity. In contrast, the tradi-
tional Internet provider hierarchy [15] can struggle to provide the
capacity needed to deliver the rapidly growing demand for content.

Although such rich connectivity potentially offers performance
benefits, application providers face challenges in realizing these
benefits. Strikingly, despite these massive changes in the traffic
being delivered and the topology it is delivered over, the protocol
used to route the traffic over the topology—the Border Gateway
Protocol (BGP)—is essentially unchanged, and significant barriers
exist to replacing it [5, 22]. While it is impressive that BGP has
accommodated these changes, it is ill-suited to the task of delivering
large volumes of consolidated traffic on the flattened topology:

• BGP is not capacity-aware. Interconnections and paths have
limited capacity. Our measurements of a large content provider
network show that it is unable to obtain enough capacity at many
interconnections to route all traffic along the paths preferred by
its BGP policy. A provider’s routing decisions should account for
these constraints, especially since a provider can cause congestion
with huge volumes of adaptive-bitrate video traffic that expands
to increase bitrate when capacity allows.
• BGP is not performance-aware. At any PoP, forwarding the
traffic to an IP prefix along the best path chosen by BGP can lead
to sub-optimal performance. The attributes that BGP relies upon
for path selection, such as AS path length and multi-exit dis-
criminators (MEDs), do not always correlate with performance.

https://doi.org/10.1145/3098822.3098853
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Overriding BGP’s path selection with performance-aware se-
lection is challenging for multiple reasons. First, BGP does not
incorporate performance information, and performance-aware
decisions require an external mechanism to capture performance.
Second, the relative performance of paths to a destination can
vary over time (e.g., in response to load), but BGP changes paths
only in reaction to changes in policy or the set of available routes.
Third, a provider may need to measure multiple non-equivalent
paths in near real-time in order to track relative performance,
yet BGP traditionally permits using only a single path to reach
a destination at any point in time. Fourth, because BGP uses a
single path per destination, it does not natively support assigning
performance-sensitive traffic and elastic traffic to different paths
in order to best make use of limited capacity on the best routes.

Although these limitations are well-known, our paper discusses
how they manifest in a production environment. This paper
presents our experience tackling these challenges at Facebook,
which uses dozens of PoPs to serve two billion users across the
vast majority of countries. We make three primary contributions.

First, since the impact of the above-mentioned limitations of
BGP depends on a network’s design, we describe the network con-
nectivity and traffic characteristics that make it challenging for
providers of popular applications to manage their egress traffic. At
Facebook, it is common for PoPs to have four or more routes to
many client networks. Although many interconnections in the US
have spare capacity [8], in our measurements across 20 PoPs, 10%
of egress interfaces experience a period in which Facebook’s BGP
policy would lead to BGP assigning twice as much traffic as the
interface’s capacity! Moreover, the traffic demand from a PoP to a
prefix can be unpredictable, with traffic rates to the same prefix at
a given time exhibiting as much as 170x difference across weeks.
Thus, while Facebook’s rich connectivity provides shorter paths,
more options for routing, and significant capacity in aggregate, the
capacity constraints of individual paths and irregular traffic makes
it difficult to use this connectivity. Traffic must be dynamically
routed in order to optimize efficiency and performance without
exceeding these constraints.

Second, we present the design of Edge Fabric, a system for
optimized routing of egress traffic. Edge Fabric receives BGP routes
from peering routers, monitors capacities and demand for outgoing
traffic, and determines how to assign traffic to routes. Edge Fabric
enacts its route selections by injecting them (using BGP) into the
peering routers, overriding the router’s normal BGP selection. Edge
Fabric has been deployed in production for over four years. We
evaluate how Edge Fabric operates in production and share how
Edge Fabric’s design has evolved over time. In addition, we discuss
technical challenges faced at Facebook’s scale and lessons learned.

Third, we instrument Edge Fabric to continually measure per-
formance along alternate paths—not just its best choice—to every
prefix. Edge Fabric gathers these measurements by routing a small
fraction of the traffic to every prefix along alternate paths. Our
measurements from 4 PoPs show that 5% of prefixes could see a
reduction in median latency of 20+ms by choosing an alternative
to BGP’s prefered route.
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Figure 1: A PoP has Peering Routers, Aggregation SWitches, and

servers. A private WAN connects to datacenters and other PoPs.

2 SETTING

2.1 Points of Presence

To help reduce user latencies, Facebook has deployed Points of
Presence (PoPs) in dozens of locations globally. A PoP serves users
from racks of servers, which connect via intermediate aggregation
switches (ASWs) to multiple peering routers (PRs), as seen in Fig-
ure 1. ASWs maintain BGP sessions with PRs and rack switches.
Each PoP includes multiple peering routers (PRs) which exchange
BGP routes and traffic with other ASes. The use of multiple PoPs
reduces latencies in two ways: 1) they cache content to serve users
directly, and 2) when a user needs to communicate with a data
center, the user’s TCP connection terminates at the PoP which
maintains separate connections with data centers, yielding the ben-
efits of split TCP [9] and TLS termination.

Only a single PoP announces eachmost-specific Facebook prefix,
and so the PoP at which traffic ingresses into Facebook ‘s network
depends only on the destination IP address.1 A global load balancing
system assigns users to PoPs via DNS (returning an IP address of a
particular PoP in response to a DNS request for a general hostname)
and by injecting PoP-specific URLs into responses (that resolve
only to IP addresses at a particular PoP). Like similar systems [4],
it injects measurements to capture the performance to users from
alternate PoPs. The load balancing system uses these measurements
to direct users to their “best” performing PoPs (subject to constraints
such as capacity; PoPs currently not serving users for maintenance,
troubleshooting, or testing; and agreements with other networks).
For 80% of user networks, it directs all requests from the network
to a single (nearby) PoP (during a day in Jan. 2017). Details of the
load balancing are out of the paper’s scope, and we design Edge
Fabric assuming it has no control over which PoP serves a given
user.

Figure 2 depicts the relative volume traffic served from 20 PoPs,
a subset selected for geographic and connectivity diversity that
combined serve most Facebook traffic. The paper refers to the
PoPs consistently by number, ordered by volume. At these PoPs,
95% of the traffic comes from clients in ≈ 65, 000 prefixes (during
a day in Jan. 2017). Considering just the client prefixes needed to
account for 95% of a PoP’s traffic, Figure 3 shows that each PoP

1A covering prefix announced across PoPs guards against blackholes if a more-specific
route fails to propagate to a router.
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Figure 2: Relative egress traffic volume (rounded) of 20 PoPs.
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Figure 3: # of BGP prefixes to constitute 95% of PoP’s traffic.
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Figure 4: # routes to prefixes contributing 95% of PoP’s traffic.

serves ≈ 700 to ≈ 13, 000 prefixes, and 16 PoPs send 95% of their
traffic to fewer than 6500 prefixes.

2.2 Interdomain Connectivity

PRs’ BGP connections to other ASes are of different types:

• Transit providers provide routes to all prefixes via a private net-
work interconnect (PNI) with dedicated capacity just for traffic
between Facebook and the provider.
• Peers provide routes to the peer’s prefixes and to prefixes in its
customer cone [18]. Peers vary by connection type:

– Private peers: PR connects to peer via a dedicated PNI.
– Public peers: PR’s BGP session to peer and traffic to peer tra-
verse the shared fabric of an Internet exchange point (IXP).

– Route server peers: PR receives peer’s routes indirectly via a
route server [2] and exchanges traffic across the IXP fabric.

A PoP may maintain multiple BGP peering sessions with the
same AS (e.g., a private peering and a public peering, or at multiple
PRs). Most PoPs connect to 2+ transit providers, with each transit

PoP ID 1 (EU) 2 (AS) 11 (EU) 16 (AS) 19 (NA)
Peers Traffic Pe. Tr. Pe. Tr. Pe. Tr. Pe. Tr.

Private .12 .59 .25 .87 .02 .24 .21 .78 .13 .73
Public .77 .23 .39 .04 .45 .45 .54 .13 .85 .07
Rt Srvr .10 — .34 — .52 — .23 — 0 —
Transit .01 .18 .01 .10 .01 .31 .02 .08 .01 .20

Table 1: Fraction of peers and of traffic to peers of various types at

example PoPs inEUrope,ASia, andNorthAmerica. Apeerwith both

a private and a public connection will count in both. A peer with a

public and a route server connection counts as public (they share an

IXP port). Traffic to public and route server peers is combined.

provider maintaining a BGP session with 2+ of the PoP’s PRs, for
capacity and failure resilience. When possible, all PRs maintain
equal PNI capacity to a given peer, although sometimes some PRs
have different capacity or do not connect to the peer at all.

In general, we configured Facebook’s network to egress a flow
only at the PoP that the flow enters at, rather than routing across
the WAN from servers in one PoP to egress links at a different
PoP. Isolating traffic within a PoP reduces backbone utilization,
simplifies routing decisions, and improves system stability (§8.1.3).
Evenwith this simplification, Facebook has diverse routing options.
Figure 4 shows the distribution of the number of routes that each
PoP could choose from to reach the prefixes that make up 95% of
its traffic. If a peer provides the same path through a public peering
and a route server, or if multiple PRs receive the same route from
the same peer, we only count it once. Although not derivable from
the graph (which combines destinations with 1-3 routes), all PoPs
except one have at least two routes to every destination, and many
have four or more routes to most prefixes.

We configure PRs to prefer peer routes to transit routes (via
local_pref), with AS path length as a tiebreaker. When paths
remain tied, PRs prefer paths from the following sources in order:
private peers > public peers > route servers.2 We encode peer
type in MEDs (and strip MEDs set by the peer, which normally
express the peer’s preference of peering points but are irrelevant
given that Facebook egresses a flow at the PoP where it ingresses).
The preference of peers over transit recognizes that an AS that
peers with Facebook expects to receive its traffic on that link. In
addition, we have found that peer routes frequently have better
performance and a lower risk of downstream congestion. Short AS
paths may be more direct or give the traffic to the destination AS
sooner [5]. By preferring the dedicated capacity of a private peering
over a connection across a shared IXP fabric, our policy avoids the
possibility of cross-congestion at the egress and respects that the
peer dedicated resources to receiving Facebook traffic.

We configured BGP at PRs and ASWs to use BGP multipath.
When a PR or an ASW has multiple equivalent BGP best paths
for the same destination prefix (as determined by the BGP best
path selection algorithm), it distributes traffic across the equivalent
routes using Equal-cost multi-path routing (ECMP).

Overall, Facebook has thousands of peer ASes. Table 1 shows,
for example PoPs, the fraction of peers that are of each type. Each
PoP shown has hundreds of peers in total, yielding rich connectivity.
The table also shows the fraction of its traffic that each PoP can serve

2We de-prioritize a handful of private peers relative to public peers for policy reasons,
but the effect is minor in the context of this paper.
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Figure 5: Distribution across PoPs of fraction of prefixes that would

have experienced congestion had Edge Fabric not intervened.

by peer type (assuming all traffic is assigned to its most preferred
route without considering capacity). Although private peers make
up at most a quarter of peers at any PoP, they receive the majority
of traffic at all but PoP-11. It is typical to pursue the dedicated
capacity of private interconnects for high-volume peerings. At all
but PoP-11, 80+% of traffic egresses to private, public, and route
server peers rather than transit, an example of how today’s large
providers “flatten” the Internet [5, 15]. However, the distribution of
peer types varies widely across PoPs by count and by traffic.

3 CHALLENGES OF BGP

As demand increased and Facebook rapidly expanded its PoP in-
frastructure and connectivity, we encountered challenges due to
limitations of BGP, leading us to build Edge Fabric. Any static
interdomain routing policy will likely suffer similar challenges.

Peering capacity is limited, but BGP is not capacity-aware.
Although Facebook builds PoPs, expands capacity, and pursues
private interconnections, a link’s capacity may not suffice to de-
liver all traffic that Facebook would like to send over it. Rapid
growth in demand can quickly make the capacity of an existing in-
terconnection insufficient, and augmenting capacity in some cases
is impossible or can take months. Short-term spikes in demand
(perhaps due to an event or a holiday) or reductions in capacity
due to failures cause volatility in demand and available capacity.
Further, PoPs serve nearby users, and so diurnal patterns can lead
to synchronized peaks in demand, causing very high utilization that
can exceed PNI capacity for short periods. In addition, capacity to
a given peer may be unequally distributed across PRs, but ECMP at
ASWs will be unaware of this imbalance and will evenly distribute
traffic across PRs, which can result in overload at some PRs and
poor utilization of capacity at others (Section 8.1.4 describes why
we do not use weighted-cost multipath). In general, assigning more
traffic to an egress interface than it (or the downstream path) can
handle causes congestion delay and packet loss, and it also increases
server utilization (due to retransmissions) [10].

This paper presents our system to enable capacity-aware egress
decisions on top of BGP. To understand the scale of the problem, we
analyzed a two-day log from January 2017 of each prefix’s per-PoP
egress traffic rate (averaged over a 1 minute window) and compared
the capacity of Facebook’s egress links to the rate of traffic that
BGP would assign to them (based on our configured BGP policy
from §2.2), if Edge Fabric did not intervene to prevent overload.
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For each PoP, Figure 5 shows the fraction of prefixes that would
experience congestion. Most PoPs are capacity-constrained for
at least one prefix, and a small fraction of PoPs are capacity-
constrained for most prefixes. For any interface overloaded at
least once, Figure 6 shows peak load per interface (computed over
1-minute intervals, relative to interface capacity). While most
interfaces experience low amounts of overload (median load =
1.19X capacity), 10% experience a period in which BGP policy
would lead to BGP assigning twice as much traffic as the interface’s
capacity! In many cases, Facebook has found that it cannot acquire
sufficient additional capacity to the peer, motivating Facebook
to build Edge Fabric to overcome BGP’s inability to handle this
overload on its own.

BGP decisions can hurt performance. Facebook’s BGP pol-
icy favors paths that are likely to optimize network traffic perfor-
mance. The policy avoids transit routes when peer routes (which
are often better) exist, tiebreaks in favor of short AS paths (usually
lower latency), and prefers peers with dedicated peering capacity
over public peers which may encounter cross-congestion. However,
BGP itself is not performance-aware, and so this policy relies on
attributes such as AS path length that serve as imperfect heuristics
for proximity and performance.

To understand the severity of this problem, we compare the
performance of alternative paths at four PoPs, one in North America
(PoP-19 in §2), one in Europe (PoP-11), and two in Asia Pacific (PoPs-
2, 16). We shift a fraction of actual user traffic for all IP prefixes onto
the second and third best BGP paths. We describe how we conduct
these measurements in more detail in Section 6.2. Figure 7 depicts
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the difference in median round-trip latency between the preferred
and less preferred paths. The figure shows that 5% of <PoP,prefix>
pairs could see an improvement of 20+ms (a threshold Facebook
considers significant) if switched from BGP’s preferred path to
its second preference, and 3% could see such an improvement if
switched to BGP’s third preference. At the scale of Facebook, this
relatively small fraction of prefixes represents a lot of traffic. The
results also show that the second preference is within 20ms of the
preferred path for 74% of <PoP,prefix> pairs, suggesting that we
may be able to avoid overload by detouring traffic to less-preferred
routes, without resorting to paths that have much worse baseline
performance.

4 GOALS AND DESIGN DECISIONS

Our goal is to overcome BGP’s limitations (§3) and enable Facebook
to use its interdomain connectivity (§2.2) to improve performance:

• Given limited capacity and the performance impact of congestion,
routing decisions must be aware of capacity, utilization, and
demand.
• Decisions should also consider performance information and
changes, while simultaneously respecting policies.

Towards these goals, in 2013 we began building Edge Fabric, a
traffic engineering system that manages egress traffic for our PoPs
worldwide. Section 5 describes Edge Fabric’s current approach to
automatically shift traffic to avoid overloading links. Section 8.1
describes how we have evolved Edge Fabric over time, due to
changing needs and thanks to operational experience that let us
improve its stability and ability to combat congestion. In addition,
we have studied how we can use measurements to improve egress
routing performance, and Section 6 discusses how we have begun
to incorporate them into our routing decisions.

We now present main design decisions of Edge Fabric.

Operate on a per-PoP basis. While Edge Fabric assigns traf-
fic to egress routes, the global load balancing system maps a user
request to ingress at a particular PoP (§2.1), and a flow egresses
at the same PoP at which it ingresses. So, Edge Fabric need only
operate at a per-PoP granularity; it does not attempt to orchestrate
global egress traffic. This design allows us to colocate its compo-
nents in the PoP, reducing dependencies on remote systems and
decreasing the scope and complexity of its decision process. We
can then restart or reconfigure Edge Fabric at a PoP in isolation
(§5.4) without impacting other PoPs (outside of the load balancing
system directing them more traffic).

Centralize control with SDN. We chose to use an SDN-based
approach, in which a centralized controller receives network state
and then programs network routing decisions. This approach brings
benefits of SDN: it is easier to develop, test, and iterate compared
to distributed approaches. Because Facebook connects to its peers
using BGP, part of the network state is the BGP paths Facebook
receives, which are continuously streamed to the controller (§5.1.1).

Incorporate real-time traffic and performance measure-
ments into decisions. The controller receives measurements of
capacity and demand multiple times per minute (§5.1.2), enabling
Edge Fabric to maximize utilization of preferred paths without

BGP InjectorRoute Overrides

BMP Collector

Traffic Collector Allocator

Topology
States

prefix1 via
X.X.X.X

Peering Routers

Controller

Figure 8: Edge Fabric components

overloading them (§5.2). Facebook has existing server-side
monitoring of client performance (§6.2.3). We added the ability to
measure multiple paths to a destination prefix in parallel by routing
a fraction of production flows (selected at random, §6.2.1) using
alternate routing tables at the PRs (§6.1 and §6.2.2). This approach
guarantees that measurements capture user-perceived performance.
Edge Fabric can identify cases where BGP’s preferred routing
is not optimal, laying the groundwork for performance-based
decisions.

Use BGP for both routing and control. Despite the central-
ized controller, every PR makes local BGP route decisions and PRs
exchange routes in an iBGP mesh; the controller only intervenes
when it wants to override default BGP decisions. To override a deci-
sion, Edge Fabric sets its preferred route to have high local_pref
and announces it via BGP sessions to PRs, which prefer it based
on local_pref (§5.3). Building Edge Fabric atop our established
BGP routing simplifies deployment, lets the network fall back to
BGP for fault tolerance, and leverages existing operational teams,
their expertise, and network monitoring infrastructure.

Leverage existing vendor software and hardware. We use
battle-tested vendor gear and industry standards, avoiding the need
for custom hardware or clean slate design. Sections 5 and 6 describe
our use of BGP, IPFIX, sFlow, ISIS-SR, eBPF, and BMP, and Sec-
tion 8.1 explains how specifics of vendor support have influenced
our design.

Overall, Edge Fabric’s design values simplicity and compatibil-
ity with existing infrastructure, systems, and practices. Its approach
to satisfy our primary goal—avoid overloading egress interfaces
(§5)—does not require any changes to our servers or (browser-based
or app-based) clients, adding only BGP sessions between the routers
and the controller. Our secondary goal of enabling performance-
aware routing (§6) relies on straightforward software changes at
servers and the addition of alternate routing tables at routers, stan-
dard functionality supported by our existing equipment.

5 AVOIDING A CONGESTED EDGE

Edge Fabric consists of loosely coupled microservices (Figure 8).
Every 30 seconds, by default, the allocator receives the network’s
current routes and traffic from other services (§5.1), projects inter-
face utilization (§5.1.2), and generates a set of prefixes to shift from
overloaded interfaces and for each prefix, the detour path to shift it
to (§5.2). Another service enacts these overrides by injecting routes
into routers via BGP (§5.3). We use a 30 second period to make it
easier to analyze the controller’s behavior, but we can lower the
period if required due to traffic volatility.
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5.1 Capturing Network State (inputs)

Edge Fabric needs to know all routes from a PoP to a destination,
and which routes traffic will traverse if it does not intervene. In
addition, it needs to know the volume of traffic per destination
prefix and the capacity of egress interfaces in the PoP.

5.1.1 Routing information.

All available routes per prefix. The BGP Monitoring Protocol
(BMP) allows a router to share a snapshot of the routes received
from BGP peers (e.g., all of the routes in its route information base,
or RIB) and stream subsequent updates to a subscriber [25]. The
BMP collector service maintains BMP subscriptions to all peering
routers, providing Edge Fabric with a live view of every peering
router’s RIB. In comparison, if Edge Fabric maintained a BGP
peering with each router, it could only see each router’s best path.3

Preferred paths per prefix. BMP does not indicate which
path(s) BGP has selected, and a BGP peering only shares a single
path, even if the router is using ECMP to split traffic across
multiple equivalent paths. The controller also needs to know what
paths(s) would be preferred without any existing overrides. So, the
controller emulates BGP best path selection (including multipath
computation and ignoring existing overrides that would otherwise
be preferred) for every prefix.

5.1.2 Traffic information.

Current traffic rate per prefix. The Traffic Collector service
collects traffic samples reported by all peering routers in a PoP (us-
ing IPFIX or sFlow, depending on the router), groups samples by the
longest-matching prefix announced by BGP peers, and calculates
the average traffic rate for each prefix over a two-minute window.
We use live rather than historical information because, for exam-
ple, the global load balancing system (§2) may have shifted traffic
to/from the PoP, destination networks may have changed how they
originate their network space for ingress traffic engineering, and
traffic demands change over time on a range of timescales.

If the rate of a prefix exceeds a configurable threshold, for ex-
ample 250 Mbps, the service will recursively split the prefix (e.g.,
splitting a /20 into two /21s, discarding prefixes with no traffic)
until the rate of all prefixes is less than the threshold. Splitting large
prefixes allows the allocator to make more fine-grained decisions
and minimize the amount of traffic that must be detoured when
interfaces are overloaded (§5.2).

Interface information. The allocator retrieves the list of inter-
faces at each peering router from a network management service
[27] and queries peering routers via SNMP every 6 seconds to re-
trieve interface capacities, allowing the allocator to quickly adapt
to capacity changes caused by failures or provisioning.

Projecting interface utilization. The allocator projects what
the utilization of all egress interfaces in the PoP would be if no
overrides had been injected, assigning each prefix to its preferred
route(s) from its emulated BGP path selection. The BGP best path
computation process may returnmultiple (equivalent) routes. These
3Previously, we used BGP add-path capability to collect multiple routes from each
router, but some vendor equipment limits the number of additional paths exchanged,
which we quickly exceeded given our rich interdomain connectivity.

routes may be spread across multiple interfaces and/or peering
routers. In these cases, the allocator assumes that ECMP at both the
aggregation layer and peering routers splits traffic equally across
the paths.

We project interface utilization instead of using the actual uti-
lization to enable the allocation process to be stateless, simplifying
our design: the allocator generates a full allocation from scratch on
each cycle and does not need to be aware of its previous decisions
or their impact. Section 8.1.1 discusses this design choice in detail.

Based on the projected utilization, the allocator identifies in-
terfaces that will be overloaded if it does not apply overrides. We
consider an interface overloaded if utilization exceeds ~95% (the
exact threshold can vary based on interface capacity and peer type),
striking a balance between efficient utilization and headroom to
handle volatility (including microbursts).

5.2 Generating Overrides (decisions)

The allocator generates overrides to shift traffic away from inter-
faces that it projects will otherwise be overloaded. For each over-
loaded interface, the allocator identifies the prefixes projected to
traverse the interface and, for each prefix, the available alternate
routes.4 It then identifies the single ⟨prefix, alternate route⟩ pairing
that it prefers to shift first from the interface, applying the following
rules in order until a single preference emerges:

1. Prefer IPv4 over IPv6 prefixes.5
2. Prefer prefixes that a peer prefers Facebook detour. Peers have

the option of providing these preferences using Facebook-
defined BGP communities.

3. Among multiple alternate routes for a given prefix, prefer routes
with the longest prefix.6

4. Prefer paths based on BGP’s best path selection process. For
instance, the allocator will prefer shifting a prefix with an avail-
able route via a public exchange over a prefix that only has an
alternate route via a transit provider (§2.2).

5. Prefer paths based on an arbitrary but deterministic tiebreaker.
The tiebreaker selects first based on the prefix value. If there are
equally preferred alternate routes for the chosen prefix, the allo-
cator orders alternate routes in a consistent way that increases
the likelihood of detour traffic being balanced across interfaces.

Once a pairing has been selected, the allocator records the deci-
sion and updates its projections, removing the prefix’s traffic from
the original interfaces and placing all of the PoP’s traffic for the
prefix onto the selected alternate route’s interface. Edge Fabric
detours all traffic for the prefix, even if the prefix’s primary route
was across multiple interfaces or routers. However, the total traffic
per prefix is always less than the threshold that Traffic Collector
uses when splitting high traffic prefixes (§5.1).

4A prefix will not have any alternate routes if all routes to it are on interfaces that
lack sufficient spare capacity (after accounting for earlier detours from this round of
allocation). This scenario is rare, as transit interfaces have routes to all prefixes and, in
our evaluation, always had at least 45% of their capacity free (§7.2).
5We prefer shifting IPv4 prefixes because we have experienced routes that blackhole
IPv6 traffic despite advertising the prefix. If Edge Fabric shifts traffic to such a route,
end-users will fallback to IPv4 [30], causing traffic to oscillate between IPv4 and IPv6.
6Unlike the standard BGP decision process, the allocator will consider using routes for
less-specific prefixes, just with lower preference.
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The allocator continues to select prefixes to shift until it projects
that the interface is no longer overloaded or until the remaining
prefixes have no available alternate routes.

Because the allocation process is stateless, it generates a new
allocation from scratch every 30 seconds. To minimize churn, we
implemented the preferences to consider interfaces, prefixes, and
detour routes in a consistent order, leading the allocator to make
similar decisions in adjacent rounds. The remaining churn is often
due to changes in traffic rates and available routes.

The headroom left by our utilization thresholds allows interface
utilization to continue to grow between allocation cycles without
interfaces becoming overloaded. If a route used by the controller
for a detour is withdrawn, the controller will stop detouring traffic
to the withdrawn route to prevent blackholing of traffic.

5.3 Enacting Allocator Overrides (output)

In each round, the allocator generates a set of BGP updates for Edge
Fabric’s overrides and assigns each update a very high local_pref.
The allocator passes the BGP updates to the BGP Injector service,
which maintains a BGP connection with every peering router in
the PoP and enacts the overrides by announcing the BGP updates
to the target routers. Because the injected updates have a very
high local_pref and are propagated between PRs and the ASWs
via iBGP, all routers prefer the injected route for each overridden
prefix. The injector service then withdraws any overrides that are
no longer valid in the current allocation.

We configure Edge Fabric and the global load balancer such
that their independent decisions work together rather than at odds.
First we need to protect against Edge Fabric decisions and global
load balancer decisions interacting in ways that cause oscillations.
In selecting which PoP to direct a client to, the global load balancer
jointly considers performance from the PoP and Facebook’s BGP
policy’s preference for the best route from the PoP, but we configure
it to ignore routes injected by Edge Fabric and instead to consider
the route that would be used in the absence of an override. If the
load balancer was allowed to consider the override route, it could
shift client traffic away from a PoP in reaction to Edge Fabric
detouring traffic from an overloaded interface to a less-preferred
route. This shift would reduce traffic at the PoP, lowering Edge
Fabric’s projection of interface load, which could cause it to stop
detouring, opening the possibility of an oscillation. Second, the
global load balancer can track interface utilization and appropriately
spread traffic for a client network across all PoPs that it prefers
equally for that network. So, Edge Fabric need only intervene with
overrides once interfaces are overloaded across all the PoPs.

5.4 Deploying, Testing, and Monitoring

We typically deploy Edge Fabric controller updates weekly, using
a multi-stage release process to reduce risk. First, because our de-
sign is modular and stateless, we write comprehensive automated
tests for individual components of Edge Fabric and Edge Fabric’s
dependencies. Second, because our controller is stateless and uses
projected interface utilization instead of actual utilization, we can
run a shadow controller inside a sandbox that can query for the
same network state as the live controller, without needing any state
from the live controller and without being dependent on its earlier

decisions. We continuously run shadow instances, built from the
latest revision, for every PoP and compare the decisions and per-
formance of shadow instances against the controllers running in
production. We review these comparisons before beginning deploy-
ment of a new version. Third, because we deploy Edge Fabric and
all dependencies on a per-PoP basis, we can roll out new versions
of a controller and its dependencies on a PoP-by-PoP basis (an au-
tomated system performs this). While the Edge Fabric controller
is being updated, the BGP Injector service continues to inject the
previous round of decisions until the controller resumes (a process
that takes less than 5 minutes). If we need to update the BGP In-
jector service, hold timers at PRs maintain existing injections until
the injector has restarted.

While the stateless controller is amenable to automated tests, it
is particularly vulnerable to errors in BGP route or traffic rate data,
as these can cause the controller to misproject interface utilization.
To catch misprojections, a monitor compares the controller’s post-
allocation projection of interface utilization with actual interface
utilization, and it raises an alarm if they differ by 5% for more than
a configurable period of time. Through this process, we identified
and corrected bugs in our routing policy and in how our PRs export
IPFIX and sFlow samples. The controller projects that ECMP will
distribute traffic nearly evenly across links. The monitor identified
instances of ECMP unexpectedly distributing traffic in a highly-
unbalanced manner, which Edge Fabric can mitigate by overriding
the multipath to send traffic to a single PR.

Similarly, while Edge Fabric’s use of BGP and distributed route
computation lets us build on existing infrastructure, it also exposes
us to the underlying complexity of the BGP protocol. In one sce-
nario, a configuration issue caused routes injected by Edge Fabric
to not be reflected across the full PoP, shifted traffic away from the
previously overloaded interface, but to a different interface than
desired. To detect such misconfigurations, we built an auditing sys-
tem that regularly compares Edge Fabric’s output against current
network state and traffic patterns.

6 TOWARDS PERFORMANCE-AWARE ROUTING

Edge Fabric avoids performance problems due to congested links
at the edge of Facebook’s network. Yet, Facebook’s users can still
suffer sub-optimal performance because of the limitations of the
BGP decision process (§3). BGPmay not choose the best-performing
path for a given prefix’s default path, and likewise, when detouring
a prefix, BGP may not choose the best-performing detour path.
Even if BGP does choose the best-performing path in all scenarios,
performance can be degraded when a prefix is detoured if its best
detour path has worse performance than its default path.

Moreover, while Facebook connects directly to many edge net-
works (like other large content providers do [5]), performance to
other edge networks (to which Facebook routes traffic via IXPs
or transit networks) can be hindered by downstream congestion,
which Edge Fabric (as described in §5) does not account for. Even
in cases when Facebook does directly connect to the edge net-
work, downstream congestion can still degrade performance. Due
to transient failures and volatility in traffic and congestion, which
path performs best can vary over time, and so performance-based
decisions need to be responsive to change. BGP provides neither
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visibility into performance nor the explicit ability to make decisions
based on it.

To enable routing decisions to incorporate performance, we need
to measure multiple paths to a destination in parallel, continuously.
In addition, to enable Edge Fabric to best utilize available capacity,
we need to be able to prioritize certain types of content (for instance,
prioritizing a live video stream when deciding which traffic to place
on an egress interface where demand exceeds capacity). However,
because BGP only supports destination-based routing, BGP alone
cannot realize either of these objectives.

We first describe how we direct specific flows onto specific paths
(§6.1), then describe how we use that capability to measure the
performance of multiple paths to a prefix in parallel (§6.2). We have
deployed these two mechanisms in production alongside Edge
Fabric (§5). We finish this section by discussing future use cases
that employ those measurements for directing specific flows to
enable performance-aware routing (§6.3).

6.1 Placing Traffic on Alternate Paths

To sidestep BGP’s limitation that it only supports destination-based
routing, we build a mechanism that allows us to route specific flows
via select paths. The mechanism requires only minimal modifica-
tions at servers and peering routers, and does not require coordi-
nation between servers and other network elements: servers can
make decisions on a per-flow basis without having any knowledge
of network state at peering routers.7

• Servers select andmark flows that should be treated specially.
Specifically, servers set the DSCP field in the IP packets of selected
flows to one of a set of pre-defined values. Servers can mark a
flow to, for instance, signal that it can be used to measure the
performance of an alternate path or to signal that the flow is
carrying real-time traffic and is performance-sensitive.
• Policy routing at the PRs match on the markings applied by
servers and route corresponding packets based on alternate rout-
ing tables. We install a unique routing table for each DSCP value.
• A controller injects routes into the alternate routing tables at
PRs to control how marked flows are routed. If the controller has
not injected a route for a particular destination, marked flows
will be routed based on the PR’s default routing table.

This approach does not require continued synchronization be-
tween servers, routers, and controllers. Servers can continuously
tag packets without any knowledge of network state, and con-
trollers can inject routes into alternate routing tables to control the
route of marked packets only as needed.

In addition, the aggregation switch (ASW) layer need not be
aware of DSCP values assigned to flows and can blindly forward IP
traffic based on BGP’s best route for the destination prefix. However,
a PR with the best route may not connect to the peer providing
the alternate route, since different PRs at a PoP can have different
peers. To handle this case, the controller injects the alternate route
at PRs that lack the peer, setting the nexthop of the route to be a
PR that connects to the peer. Trying to forward traffic from one PR
to another via IP would cause a loop since the aggregation layer
forwards traffic based on BGP’s best route for the destination. To

7Per-flow overrides avoid out-of-order packets that slow TCP.

avoid this, we configure the PRs to address each other via labels
(using ISIS-SR) and tunnel traffic via ASWs using MPLS forwarding.

6.2 Measuring Performance of Alternate Paths

End-user TCP connections terminate at front-end servers at the
edge of our network, which in turn proxyHTTP requests to backend
servers [26]. We use the mechanism described in Section 6.1 to ran-
domly select a subset of these connections (§6.2.1) and route them
via alternate paths (§6.2.2). This allows us to collect measurements
with Facebook’s existing infrastructure that logs the performance
of client connections observed by the front-end servers (§6.2.3).

6.2.1 Randomly selecting flows. We implemented a program that
runs on front-end servers to randomly select flows and mark them
to be routed via an alternate path using the Extended Berkeley
Packet Filter (eBPF) instruction set. eBPF allows the program to be
loaded into the kernel where it can efficiently process all packets
egressing from the server. With this approach, no changes are
required to existing client or server applications.

The eBPF program randomly selects a configurable fraction of
flows for alternate path measurements and then sets the DSCP
field in all of the flow’s IP packets to a DSCP value reserved for
alternate path measurements. The program’s configuration can be
dynamically updated and contains the percentage of flows that
should be randomly mapped to each DSCP value reserved for mea-
surements. For instance, to measure two extra paths per prefix, the
configuration could assign 0.75% of flows the DSCP value 12 and
0.25% of flows the DSCP value 24. Given the scale of Facebook,
sampling a small fraction of connections still results in a large set of
measurements. By using passive measurements based on existing
production traffic, we avoid active measurements (e.g., pings) which
may not represent performance as perceived by real users.

6.2.2 Injecting routes. We built an AltPath controller to inject
routes into alternate routing tables. The controller only generates
alternate paths for prefixes with traffic in the past 10 minutes,
drastically reducing the size of alternate routing tables (§2.2).

Every 30 seconds, the AltPath controller uses BGP routes re-
trieved from the BMP Collector service (§5.1) to decide on an al-
ternate path for each prefix, for each of the DSCP values being
assigned by servers. The controller then uses the BGP Injector ser-
vice (§5.3) to inject alternate routes for each DSCP value into the
corresponding routing table at PRs.

The AltPath controller takes as input a set of destination ASNs
that it will not perform alternate path measurements for. Our traffic
engineering team adds to the list of networks that are known (from
prior operational experience) to have extremely poor performance
on alternate paths to avoid negatively impacting end-users.

6.2.3 Measuring performance. At the termination of (a sample
of) client TCP connections, our front-end servers log metrics that
we use to evaluate path performance. These servers use a separate
eBPF program to capture statistics at connection termination for
sampled TCP connections, with a typical sampling rate of 1 out
of every 1000 connections. The statistics include retransmission
rate, retransmission timeout (RTO), smoothed round-trip times
(SRTT), and the number of segments sent/received. In addition, the
servers sample HTTP transactions and measure per-response client
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download goodput. The servers also record the value assigned to
the connection’s DSCP field by the eBPF program, if any. A collector
joins samples with egress route information so that samples can be
grouped by the route they traversed and performance statistics can
be aggregated per route.

6.3 Future Uses of Performance-Aware Routing

The mechanisms described in Section 6.1 and Section 6.2 allow us
to route traffic along alternate paths and measure performance. In
this section, we explore how we can build atop these mechanisms
to improve user performance.

6.3.1 Overriding paths chosen by BGP. Today, Edge Fabric over-
rides BGP’s default decision process to mitigate congestion at the
edge of Facebook’s network. Going forward, we can improve Edge
Fabric by incorporating AltPath measurements. First, Edge Fab-
ric can use the measurements to identify scenarios where it may
be possible to improve performance by overriding BGP’s default
decisions, even though the edge is not congested. When perfor-
mance on the current path degrades, AltPath measurements can
identify whether the problem can be avoided via a path change,
or whether the problem impacts all paths (as might happen with
severe congestion close to the destination). Second, Edge Fabric
can use alternate path measurements to ensure that traffic is placed
onto the best performing detour path whenever congestion does
occur. We provide initial results on the promise of these use-cases in
Section 7.3. Finally, alternate path measurements can help network
operators identify how performance will be impacted if traffic is
detoured, which can be used in network planning decisions.

6.3.2 Optimizing use of limited capacity. When capacity is lim-
ited, Edge Fabric may be forced to detour traffic to paths with
comparatively worse performance. Edge Fabric can be extended
to best use the limited capacity on the primary path by shifting
prefixes and/or flows that measurements indicate are less likely
to be impacted. First, Edge Fabric can amend its decision criteria
(§5.2) to prefer shifting prefixes that will experience little perfor-
mance degradation on their detour path. Second, higher priority
flows can be routed over the constrained path. Front-end servers
can assign predefined DSCP values to flows that are higher priority,
such as a live video stream. Then, when Edge Fabric injects routes
to shift default-routed traffic away from an overloaded interface, it
can in parallel inject routes into an alternate routing table to keep
flows that are marked with a high priority DSCP value on the better
performing path. Both IPFIX and sFlow samples collected by Traffic
Collector include the DSCP field, thereby making it possible for
Edge Fabric to determine the rate of traffic marked with a given
DSCP value and account for this in its projection.

7 RESULTS ON PRODUCTION TRAFFIC

7.1 Deployment Status and Evaluation Datasets

We deployed Edge Fabric for all production traffic, detouring traffic
to avoid overloading interfaces at PoPs around theworld. Section 7.2
describes a two-day study in January 2017, predating our current
stateless controller. This study used our earlier stateful controller,
which also did not automatically split large-volume prefixes. We
believe that our stateless controller achieves better utilization than
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Figure 9: Utilization of interfaces relative to detour thresholds.

the stateful one (without negative side effects) but have not yet
formally evaluated it.

We are now deploying AltPath across our PoPs, but the results
in Section 7.3 are from our initial trial deployment at four PoPs
beginning in late 2016, chosen in part for their rich connectivity:
one in North America (PoP-19 in §2), one in Europe (PoP-11), and
two in Asia Pacific (PoPs-2, 16). Combined, these PoPs account for
approximately 18% of the total traffic of the 20 PoPs. We do not
currently use AltPath measurements automatically to inform pro-
duction routing decisions, but Section 7.3 presents trial results on
the impact and challenges of integrating performance into routing
decisions.

We created two alternate path tables at each router, populated
with BGP’s 2nd and 3rd preferred paths for all prefixes. Our 2016
measurements predate our current DSCP-based approach and in-
stead assign flows to tables based on the flows’ destination ports.
For each alternate routing tables, we generated a distinct set of
ports that matches approximately 0.5% of the total traffic, and then
installed rules at PRs to route traffic destined towards these ports to
one of the tables. To increase the number of measurements of alter-
nate paths, we apply a 100x multiplier to the existing measurement
sampling rate whenever a connection uses a port in the AltPath
port set. With this multiplier, each alternate path receives 0.5% of
traffic and has ≈ 50% as many measurements as the primary path.

7.2 Evaluating Capacity-Aware Routing

Does Edge Fabric achieve its primary goal, preventing congestion

at edge interfaces while enabling efficient utilization? Edge Fabric
prevents congestion by detouring traffic to alternate routes. During
the study, non-overloaded alternate routes always existed, giving
Edge Fabric options to avoid overloading interfaces. In particular,
transit providers can take detoured traffic to any destination, and
the maximum instantaneous transit utilization observed at any
individual PoP (sampled at one minute intervals) during the study
was 55%. Edge Fabric successfully prevented egress traffic from
overloading egress interfaces, with no packet drops at an interface
when Edge Fabric was not detouring traffic from it, nor in 99.9%
of periods in which it was detouring. Figure 9 shows the utilization
on these interfaces (relative to their detour thresholds) during these
periods; Edge Fabric keeps utilization of preferred routes high
even while avoiding drops, and utilization is below a safe threshold
during periods in which Edge Fabric decides not to detour traffic.

How much traffic does Edge Fabric detour? Figure 10 shows the
distribution of the fraction of time that Edge Fabric detoured traffic
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Figure 12: Fraction of traffic detoured by Edge Fabric across 20

PoPs and at the PoP with the largest fraction detoured.

from each interface to avoid overloading it. During our evaluation
period, Edge Fabric detoured traffic from 18% of interfaces at least
once, and it detoured 5% of interfaces for at least half the period.
Figure 11 shows how long each period of detouring lasts, and how
long the periods are between detours for a given (PoP, destination
prefix). The median detour lasts 22 minutes, and 10% last at least 6
hours. Interestingly, the median time between detours is shorter–
only 14 minutes–but the tail is longer, with a gap of more than 3
hours 36% of the time and a sizable fraction of gaps long enough to
suggest detouring during a short daily peak. Figure 12 shows, over
time, the fraction of traffic detoured across 20 PoPs and the fraction
of traffic detoured at the PoP (in this set of 20) that detours the
highest fraction of its traffic. The global and PoP detour volumes
display diurnal patterns and remain a small fraction of overall traffic,
leaving spare capacity to absorb detours, as PoPs always had at
least 45% of their transit capacity free. Edge Fabric enables PoPs
to dynamically detour traffic from interfaces that would otherwise
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and so a negative value indicates that Edge Fabric’s override

achieved better performance (lower latency).

become heavily overloaded (see Figure 6) by taking advantage of
available capacity elsewhere.

7.3 Evaluating Performance-Aware Routing

This section investigates how performance differs across paths to
the same prefix and whether our system can use this information to
select paths that outperform the ones BGP prefers. We use 7 days of
measurements of production traffic from 4 PoPs where we deployed
alternate path measurements (§7.1), including measurements of
every prefix served from any of those PoPs, with a total of over
350M alternate path measurements to 20K ASes and an average of
8000 measurements per ⟨alternate path, destination prefix⟩.

What is the performance impact of using measurements of alter-

nate paths to inform better decisions? We use the measurements to
override BGP decisions for actual production user traffic at PoP-2.
AltPath identified 400 destination prefixes for which an alternate
route has a median latency at least 20ms faster (and loss was no
worse) than BGP’s preferred path (§7.1). Edge Fabric consumed
this information and injected overrides at the PoP, steering these
prefixes’ production traffic (minus the small amount detoured for
AltPath) to these routes. We left these overrides in place for 24
hours.

Figure 13 shows the achieved performance for prefixes redirected
because of better median latency, comparing the performance of
AltPath’s designated path (now carrying the majority of traffic)
versus the path preferred by our default BGP policy (now carrying
a small amount of traffic for AltPath measurements). For these
prefixes, 45% of prefixes achieved a median latency that was better
by at least 20ms (even with most traffic shifted to the path, which
potentially degrades performance), and 28% of prefixes improved
by at least 100ms. On the other hand, some overrides did not work
as expected. For example, 17% of prefixes experienced a median
latency at least 20ms worse than the default path, and 1% were
worse by at least 100ms. If the system dynamically adjusted routing
(as opposed to our one-time static overrides), these results signal
the potential for oscillations. The vast majority of these cases were
prefixes moved from peer routes to transit provider routes.

When overrides result in worse performance, we speculate that
this difference is likely a combination of two factors: (1) a path’s
performance is a function of the load placed onto it, and (2) a path’s
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performance can change over time. As future work, we intend
to investigate these issues by conducting more granular shifts of
traffic, so that we can understand how the load that we place onto
particular paths impacts performance. In addition, this challenge
points to the need for a robust and reactive control system that
decides whether to shift traffic based not only on measurements for
individual prefixes, but also on whether other traffic is being shifted
to or from shared paths, historical information, and other factors
that can impact the shift. Towards this goal, we plan to further
increase the measurement sampling rate of AltPath, such that a
controller could have sufficient samples to evaluate performance
over a short timescale.

AltPath also identified 700 prefixes for which BGP’s 3rd pref-
erence out-performed its 2nd preference, and so we configured
Edge Fabric to use the 3rd preference when it needed to detour the
prefixes to prevent congestion. However, during our experiment,
fewer than 5% of these prefixes were detoured by Edge Fabric. We
compared the performance of the selected detour path to AltPath
measurements of BGP’s 2nd preference (Edge Fabric’s default de-
tour) during these detours and found that all but 2 of the prefixes
detoured achieved better performance. This result indicates that
AltPath can help limit the performance hit experienced by prefixes
that Edge Fabric detours due to congestion.

Does AltPath accurately capture end-to-end performance? We
conducted a controlled experiment using the PEERING testbed [24].
The testbed peers directly with Facebook across the public AMS-
IX fabric, and PEERING announcements also reach Facebook via
PEERING’s transit providers. We operated clients on IP addresses in
a PEERING prefix that we announced both directly to Facebook and
via transit. The clients continuously used HTTP to fetch 515KB and
30KB files from Facebook at a frequency that keeps the client’s CPU
and bandwidth utilization below 20%. Over time, we used Linux’s
traffic control framework to induce 40ms increased latency on
traffic arriving directly from Facebook, via transit, or both.We used
AltPath measurements to estimate the difference in performance
(i.e., the difference in induced latency) on the direct and transit
paths over 5-minute intervals. AltPath identified the difference
in induced latency to within 2.2ms of the induced difference in all
5-minute intervals during an 18 hour experiment (except in the
5-minute intervals during which induced latency was in flux), with
an average error of 0.6ms. This level of accuracy is sufficient to
allow Edge Fabric to compare performance across paths when
making detour decisions.

8 OPERATIONAL EXPERIENCE

Edge Fabric has evolved over years in response to growth at our
PoPs and from realizations derived from operational experience.
Our current design of Edge Fabric focuses on providing the flexi-
bility that we require to handle different egress routing scenarios,
but prefers well understood techniques and protocols over more
complex approaches whenever possible.

8.1 Evolution of Edge Control

As the size and number of our PoPs have continued to grow, we
strive for a simple, scalable design. These desired traits have re-
quired the continuous evaluation and improvement of different

pieces of our design and the careful consideration of how a design
decision will impact us in the long-term.

8.1.1 From stateful to stateless control. Our current implementa-
tion of Edge Fabric is stateless, meaning that it makes its alloca-
tion and override decisions from scratch in each 30 second cycle,
without being aware of its previous detours. This approach has a
number of advantages stemming from the simplicity of the design.
For instance, because the stateless allocator begins each cycle by
gathering all information it needs and projecting what utilization
will be if the controller does not intervene (§5.1.2), it is straightfor-
ward to test, restart, or failover the controller. The controller only
needs to calculate what traffic should be moved given its inputs and
projection, and can be tested by simply providing input scenarios
and checking its decision (§5.4).

In comparison, our previous stateful implementation required
recording the allocator’s state after each round both locally and
remotely. If the controller was restarted due to an upgrade or a
failure, it had to recover its previous decisions from a remote log,
increasing complexity. In addition, the stateful controller’s decision
process was more complicated, as the controller not only had to
decide which prefixes to shift when interfaces were overloaded but
also which existing overrides to remove given current interface
load. Because the stateful controller would not consider removing
overrides until interface utilization dropped below a threshold, it
could not backtrack while interface utilization was still increasing,
and its options for further detouring were restricted by the impact
of its previous actions. In some cases, the controller would shift a
prefix to a detour interface, only to have the detour interface be-
come overloaded in a subsequent cycle (due to the natural growth
of traffic), requiring that the prefix be shifted yet again. Maintain-
ing proper accounting of these states and decisions complicated
the implementation and testing, since the logic and tests had to
reason about and inject cascading decisions and states, ultimately
providing the motivation for the stateless redesign.

8.1.2 From host-based to edge-based routing. Our current imple-
mentation of Edge Fabric uses BGP to enact overrides (§5.3) and
only requires hosts to signal which flows require special treatment,
such as those used for alternate path measurements (§§ 6.1 and 6.2).
In comparison, previous implementations of Edge Fabric relied
on host-based routing to enact overrides. In this model, the con-
troller installed rules on every server in the PoP. These rules applied
markings to traffic destined towards different prefix. Corresponding
rules at PRs matched on these markings to determine which egress
interface a packet should traverse, bypassing standard IP routing.

During the host-based routing era, Edge Fabric evolved through
three different marking mechanisms in production: MPLS, DSCP,
and GRE. (Our MPLS based implementation went a step further
than what Edge Fabric does today by routing all egress traffic
based on decisions made at the hosts, effectively shifting all IP
routing decisions away from our PRs.) MPLS and DSCP were com-
patible with our early PoP architectures, in which we strived for
balanced peer and transit connectivity across PRs, and any traffic
that required detouring was sent to transit. Since traffic was subject
to ECMP, all PRs had identical rules for the same peers (e.g., DSCP
value 12 would detour traffic to transit X on all PRs). However, as
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our PoP architectures grew, we increasingly had imbalanced tran-
sit and peering capacity across PRs and wanted control of which
PR traffic egressed at, and so we switched to using GRE tunnels
between servers and PRs.

From our experience with these mechanisms, we have found that
it is non-trivial to obtain both host software and vendor software
that provide fast and robust support for these tunneling protocols.
Shifting the responsibility of routing traffic via a specific egress
interface to end-hosts makes debugging and auditing the network’s
behavior more difficult, as configuration must be inspected at mul-
tiple layers. Further, when interfaces fail or routes are withdrawn,
end-hosts must react quickly to avoid blackholing traffic, making
synchronization among end-hosts, PRs, and controllers critical.

In comparison, Edge Fabric does not require hosts to be aware
of network state and reduces synchronization complexities by in-
jecting overrides to PRs at the edge of the network. In addition,
this approach empowers PRs to invalidate controller overrides to
prevent blackholing of traffic, since an interface failure will cause
the PR to begin routing traffic to the next best route.

We believe our current edge-based approach provides us with
many of the advantages of host-based routing with minimal com-
plexity. While host-based routing gives hosts more control of how
packets are routed, the additional flexibility is not currently worth
the added complexity for the following reasons. First, our measure-
ments demonstrate that themajority of traffic can use paths selected
by BGP’s standard process, with Edge Fabric overriding BGP only
for a small portion of traffic in order to avoid causing congestion
(§7.2) or to improve performance (§7.3). Second, our approach to
overriding destination-based routing allows servers to tag select
flows (§6.1) for special treatment, and it allows controllers to de-
cide whether the routes for these flows should be overridden (§6.3).
Although this decoupling limits the degree of control at servers,
we believe that it results in a system that is simpler to design and
troubleshoot, and that it provides sufficient flexibility for our in-
tended use cases (§6.3). Third, because Facebook chooses to have
traffic ingress, egress, and be served at the same PoP, the choices for
routes are limited to decisions that can be signaled to and enacted
at the PRs. If another PoP starts to provide better performance for
a user network, the global traffic controller will redirect the traffic
to that PoP.

8.1.3 From global to per-PoP egress options. Previously, Face-
book propagated routes from external peers between PoPs in an
iBGP mesh, such that a user’s traffic could ingress via one PoP and
egress via another. The ability to route traffic across the WAN to
egress at a distant PoP can improve performance in some cases, but
we had to design mechanisms to keep it from causing oscillations.
For instance, some of the traffic on an overloaded egress interface
may have ingressed at a remote PoP. If Edge Fabric overrode the
route at the egress PoP to avoid congestion, the override update
propagated to the ingress PoP. If we had allowed the override to
cause the ingress PoP’s BGP process to stop preferring the egress
PoP, the projected demand for the overloaded egress interface could
have dropped, which could cause Edge Fabric to remove the over-
ride, which would cause the ingress PoP to again prefer the original
egress PoP, an oscillation. To prevent the override from causing the
ingress PoP to change its preferred egress PoP, the controller set

the BGP attributes of the override route to be equal to the original
route. However, manipulating BGP attributes at the controller ob-
fuscated route information, making it difficult to understand and
debug egress routing. We disabled route redistribution between
PoPs once we improved the accuracy and granularity of the global
load balancer’s mapping, and now traffic egresses at the same PoP
as it ingresses. Since the global load balancer controls where traffic
ingresses, it can spread traffic for a client network across PoPs that
it considers to be equivalent to make use of egress capacity at mul-
tiple PoPs. This allows Facebook to avoid using backbone capacity
to route traffic between PoPs and simplifies Edge Fabric’s design.

8.1.4 From balanced to imbalanced capacity. As our PoPs have
grown, we have had to extend our PoP design to handle corner-
cases. As we increased the size and scale of our PoPs, we began
to have more peers with imbalanced capacity (varying capacity to
the same peer across PRs), partly due to the incremental growth
of peering connectivity, but also because of inevitable failures of
peering links and long recovery times. These imbalances created a
problem because our ASWs use ECMP to distribute traffic evenly
among PRs with the best paths. Instead of extending Edge Fabric
to handle these imbalances, we could have chosen to use WCMP
(Weighted Equal-Cost Multi-Path routing) at our ASWs and PR.

However, we chose to instead extend Edge Fabric to handle
these capacity imbalances for a number of reasons. First, while
a number of routing and switching chipsets support WCMP, it
has far less adoption and support from our vendors than ECMP,
making it riskier to adopt. Even with vanilla-ECMP, we have ob-
served unequal traffic distributions (§5.4) and other erroneous or
unexpected behavior. Second, since the WCMP implementations
used by vendors are proprietary, we cannot predict how WCMP
will behave, making projecting utilization and engineering traffic
more difficult, and potentially increasing the complexity of Edge
Fabric. Finally, WCMP implementations operate on the router’s
entire routing table, can take minutes to converge after an event
(such as a link failure creating imbalanced capacity), and may not
be efficient enough to balance traffic properly [33]. In comparison,
Edge Fabric can identify the subset of prefixes with traffic and
inject routes to mitigate the failure within seconds.

8.2 The Challenge of IXPs

Internet exchange points (IXPs) have been a focus in academia
[2, 12], but they present challenges to a provider of Facebook’s
scale. In contrast to a dedicated private interconnect, a provider
cannot know how much capacity is available at a peer’s port, since
other networks at the IXP may be sending to it as well. This lim-
ited visibility makes it harder to simultaneously avoid congestion
and maximize interface utilization. Edge Fabric supports setting
limits on the rate of traffic sent to a peer via a public exchange to
avoid congesting a peer’s public exchange connection (§3). Some
exchanges report the total capacity of each peer’s connection to the
exchange fabric, but this information alone cannot be used to set a
limit since we need to account for traffic that the peer will receive
from other peers on the exchange. As a result, we set capacity con-
straints by contacting large public exchange peers and asking them
for estimated limits on the maximum rate of traffic that we can
send to them, as the peers have more insight into their interface
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capacity and utilization. We handle overload on these connections
using the same approach as a regular PNI interface, except we limit
utilization per nexthop.

9 RELATEDWORK

CDN traffic engineering. As a result of CDN traffic growth,
researchers and engineers have proposed new traffic engineering
solutions. A common approach in CDN traffic engineering, which
Edge Fabric also employs, is centralized (SDN) control that com-
bines network and traffic information to configure network devices.

Researchers have studied multiple ways to choose where a
client’s request should be directed (e.g., [7, 11, 32]), including using
anycast [11] and DNS extensions [7] as mechanisms to direct
clients over to “nearby” servers. These solutions target a different
set of challenges than those described in §3 and are complementary
to Edge Fabric. Facebook employs solutions to choose where a
client should be directed, but still needs Edge Fabric to choose
which route to use when sending data to the client.

More related to our work are Footprint [16], PECAN [28], Entact
[32], and Espresso [31], which propose choosing which PoP and/or
path a client should be directed to as a function of path performance.
While Footprint focuses on shifting load of long-lived stateful client
sessions between PoPs to avoid congestion and PECAN focuses on
measuring performance and choosing ingress routes (from clients
to servers), Edge Fabric was designed to shift client traffic between
alternate egress routes (from servers to clients) to avoid congestion.
The three proposals are complementary: our techniques could be
applied to Footprint and PECAN, and vice-versa.

Entact and Espresso are most similar. Entact overrides BGP’s
default routing decisions through a well-designed approach that
balances performance, load, and cost, evaluating the approach via
emulation [32]. Similar to AltPath, Entact directs some traffic to
alternate paths to measure their performance. We build on this idea,
working through the details of deploying such a system in produc-
tion, at scale, in a way that applies to all our services and users. For
example, while Entact measured alternate path performance for
individual IP addresses within prefixes, AltPath can assign at ran-
dom or select flows across the address space, guarding against cases
in which different addresses experience different performance and
enabling future use of the same mechanism for application-specific
routing. Entact uses active measurements (pings) to measure path
performance, but is unable to find responsive addresses in many
prefixes so can only make decisions for 26% of MSN traffic. The
need for responsive addresses also limits the number of alternate
paths that Entact can measure in parallel and keeps it from increas-
ing the granularity of its decisions by deaggregating prefixes (both
would require finding more responsive addresses). These atomic
assignments may not be a good approximation of Entact’s optimal
traffic assignments, which assume a provider can split traffic to a
prefix arbitrarily across multiple paths. By applying an approach
similar to Entact’s but based on passive measurement of production
traffic, Edge Fabric uses Facebook’s existing server-side measure-
ment infrastructure to collect measurements that cover and are
representative of our entire user base, can split prefixes to increase
decision granularity, and can use as many paths in parallel as our
peering routers can support. Finally, we expose challenges that

arise in practice (§7.3), including the potential for oscillations, that
do not occur in Entact’s emulated evaluation.

Espresso is Google’s SDN-based system to control egress rout-
ing [31]. Espresso and Edge Fabric are both designed by huge
content providers needing to overcome challenges with BGP and
BGP routers as they expand their PoP and peering footprint in
the face of massive traffic growth. They take a similar top-level
approach, centralizing control of routing while retaining BGP as
the interface to peers. However, the two systems prioritize different
tradeoffs in many other important design decisions, presenting an
interesting case study of how the ranking of priorities can impact a
design. Espresso uses a bespoke architecture to remove the need
for BGP routers that support full Internet routing tables, whereas
Edge Fabric relies on BGP and vendor BGP routers to build on
existing experience and systems. Edge Fabric restricts the size of
its multiple routing tables by isolating PoPs, such that the number
of prefixes carrying user traffic per PoP is low (Figure 3). Whereas
Facebook achieves simplicity by isolating prefix announcements,
ingress, egress, and control to individual PoPs, Espresso uses a
single global controller and can route traffic across the WAN to
egress at distant PoPs, providing flexibility. Edge Fabric’s con-
troller pushes its egress decisions only to peering routers, allowing
us to isolate Facebook’s hosts from network state. Espresso, on the
other hand, pushes routing decisions to hosts, maximizing flexibil-
ity but requiring a more sophisticated controller architecture and
the continuous synchronization of routing state at hosts to prevent
blackholing of traffic. Section 8.1 discusses these tradeoffs (relative
to our goals) in more detail, based on our past experience with
routing egress traffic between PoPs and with host-based routing
(earlier Edge Fabric designs that were more similar to Espresso).
Espresso includes approaches for mitigating some of the challenges
that section describes. Our paper focuses on measurements and
challenges of the BGP interconnectivity of a large content provider,
and on the design and evaluation of a traffic engineering solution
that integrates with existing peering routers.

B4 [14] and SWAN [13] centralize control of inter-datacenter
networks to maximize utilization without hurting performance of
high-priority traffic. Edge Fabric has a similar goal, and it also
uses centralized control. However, the difference in the setting in-
troduces new challenges. In particular, B4 and SWAN operate in
a closed environment in which all hosts and network devices are
under unified administration, and the majority of the traffic can
tolerate delay and loss. In contrast, Edge Fabric controls egress
traffic to networks and users outside its control. Further, much of
the traffic is adaptive bitrate video, and it has soft latency demands
far beyond the elastic traffic on inter-datacenter WANs. Fibbing
centralizes control of legacy OSPF networks, injecting informa-
tion to induce distributed routers to select desired intradomain
routes [29]. Edge Fabric’s controller similarly injects routes, but
our interdomain setting provides much less visibility into or control
over end-to-end paths. Edge Fabric could take advantage of richer
mechanisms for traffic engineering, e.g., iSDX [12].

Performance monitoring. To inform CDN traffic engineering,
existing techniques measure path performance by injecting mea-
surement traffic into the network or by passively monitoring on-
going traffic. Active measurement techniques instrument clients
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to collect measurements [4, 21] or dedicated measurement van-
tage points [1, 18, 19]. Passive measurement techniques can require
(often expensive) monitoring functionality in network equipment
[15, 17]. Edge Fabric conducts passive measurements at Face-
book’s servers, which allows (i) monitoring of all paths and services
without the need to instrument millions of clients and (ii) the collec-
tion of richer metrics (e.g., SRTT) compared to on-path devices. Our
finding that a small number of interfaces experience congestion is
similar to previous IXP characterization studies [2, 8, 16].

10 CONCLUSION

Today’s Internet traffic is dominated by a small number of big
content providers. How they interact with other ASes largely shapes
interdomain routing around the world.

This paper provides the first public details of the design, imple-
mentation, and operational experience of Edge Fabric, a system
that steers vast amounts of content to the world. Edge Fabric aug-
ments BGPwithmeasurement and control mechanisms to overcome
BGP’s lack of congestion- or performance-awareness. We designed
it to be simple and scalable, taking advantage of centralized control,
existing support in vendor software and hardware, and server-based
measurements. Our results demonstrate that Edge Fabric success-
fully avoids congesting capacity-constrained interconnections, as
well as show the potential for Edge Fabric’s alternative path mea-
surements to realize performance-aware interdomain routing.

BGP will be the Internet’s interdomain routing standard for the
foreseeable future. By sharing our 4 years of experience engineering
our egress traffic, including a detailed look at opportunities and
challenges presented by the Internet connectivity of today’s large
content providers, we hope that the limitations of BGP can be better
understood and every Internet user’s experience can be improved.
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