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ABSTRACT

As deep reinforcement learning (RL) showcases its strengths in

networking, its pitfalls are also coming to the public’s attention.

Training on a wide range of network environments leads to subop-

timal performance, whereas training on a narrow distribution of

environments results in poor generalization.

This work presents Genet, a new training framework for learn-

ing better RL-based network adaptation algorithms. Genet is built

on curriculum learning, which has proved effective against sim-

ilar issues in other RL applications. At a high level, curriculum

learning gradually feeds more “difficult” environments to the train-

ing rather than choosing them uniformly at random. However,

applying curriculum learning in networking is nontrivial since the

“difficulty” of a network environment is unknown. Our insight is to

leverage traditional rule-based (non-RL) baselines: If the current RL

model performs significantly worse in a network environment than

the rule-based baselines, then further training it in this environ-

ment tends to bring substantial improvement. Genet automatically

searches for such environments and iteratively promotes them to

training. Three case studies—adaptive video streaming, congestion

control, and load balancing—demonstrate that Genet produces RL

policies that outperform both regularly trained RL policies and

traditional baselines.

CCS CONCEPTS

• Networks → Application layer protocols; Transport proto-

cols; • Computing methodologies → Reinforcement learning;
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1 INTRODUCTION
Many recent techniques based on deep reinforcement learning

(RL) are now among the state of the arts for various networking

and systems adaptation problems, including congestion control
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(CC) [24], adaptive bitrate streaming (ABR) [32], load balancing

(LB) [31], wireless resource scheduling [10], and cloud schedul-

ing [34]. For a given distribution of training network environments

(e.g., network connections with certain bandwidth patterns, delay,

and queue length), RL trains a policy to optimize performance over

these environments.

However, these RL-based techniques face two challenges that

can ultimately impede their wide use in practice:

• Training in a wide range of environments:When the training

distribution spans a wide variety of network environments (e.g.,

a large range of possible bandwidth), an RL policy may perform

poorly even if tested in the environments drawn from the same

distribution as training.

• Generalization: RL policies trained on one distribution of syn-

thetic or trace-driven environments may have poor performance

and even erroneous behavior when tested in a new distribution

of environments.

Our analysis in §2 will reveal that, across three RL use cases in

networking, these challenges can cause well-trained RL policies

to perform much worse than traditional rule-based schemes in a

range of settings.

These problems are not unique to networking. In other domains

(e.g., robotics, gaming) where RL is widely used, it is also known

that RL models have performance issues in both new environments

drawn from the training distribution and new environments drawn

from an unseen distribution [27, 36, 37, 52, 59]. There have been

many efforts to address these issues by enhancing offline RL training

or retraining a deployed RL policy online. Since updating a deployed

model is not always possible or easy (e.g., loading a new kernel

module for congestion control or integrating an ABR logic into a

video player), we focus on improving RL training offline.

A well-studied paradigm that underpins many recent techniques

to improve RL training is curriculum learning [36]. Unlike traditional

RL training that samples training environments in a random order,

curriculum learning generates a training curriculum that gradually

increases the difficulty level of training environments, resembling

how humans are guided to comprehend more complex concepts.

Curriculum learning has been shown to improve generalization [6,

12, 35] as well as asymptotic performance [25, 53], namely the

final performance of a model after training runs to convergence.

Following an easy-to-difficult routine allows the RL model to make

steady progress and reach good performance.

In this work, we present Genet, the first training framework that

systematically introduces curriculum learning to RL-based networking

algorithms. Genet automatically generates training curricula for

network adaptation policies. The challenge of curriculum learning

in networking is how to sequence network environments in an order

that prioritizes highly rewarding environments where the current

RL policy’s reward can be considerably improved. Unfortunately,
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Figure 1: Genet creates training curricula by iteratively finding

rewarding environments where the current RL policy has a large gap-

to-baseline.

as we show in §3, several seemingly natural heuristics to identify

rewarding environments suffer from limitations.

• First, they use intrinsic properties of each environment (e.g., shorter

network or workload traces [34] and smoother network condi-

tions [19] are supposedly easier), but these intrinsic properties

fail to indicate whether the current RL model can be improved in

an environment.

• Second, they use handcrafted heuristicswhich may not capture all

aspects of an environment that affect RL training (e.g., bandwidth

smoothness does not capture the impact of router queue length on

congestion control, or buffer length on adaptive video streaming).

Each new application (e.g., load balancing) also requires a new

heuristic.

The idea behind Genet is simple: An environment is considered

rewarding if the current RL model has a large gap-to-baseline, i.e.,

how much the RL policy’s performance falls behind a traditional

rule-based baseline (e.g., Cubic or BBR for congestion control, MPC

or BBA for adaptive bitrate streaming) in the environment. We

show in §4.1 that the gap-to-baseline of an environment is highly

indicative of an RL model’s potential improvement in the environ-

ment. Intuitively, since the baseline already shows how to perform

better in the environment, the RL model may learn to “imitate” the

baseline’s known rules while training in the same environment,

bringing it on par with—if not better than—the baseline. On the flip

side, if an environment has a small or even negative gap-to-baseline,

chances are that the environment is intrinsically hard (a possible

reason why the rule-based baseline performs badly), or the current

RL policy already performs well and thus training on it is unlikely

to improve performance by a large margin. A small gap-to-baseline

might also arise when the rule-based baseline has poor performance

yet the RL model still has a large room for improvement. Genet

ignores this case, but we will discuss it in §7.

Inspired by the insight, Genet generates RL training curricula by

iteratively identifying rewarding environments where the current

RL model has a large gap-to-baseline and then adding them to RL

training (Figure 1). For each RL use case, Genet parameterizes the

network environment space, allowing us to search for rewarding

environments in both synthetically instantiated environments and

trace-driven environments. Genet also uses Bayesian Optimization

(BO) to facilitate the search in a large space. In particular, we cast the

search for environments with a large gap-to-baseline as amaximum-

search problem of a blackbox function in a high-dimensional space

where each point represents a set of environment configurations

and the function value is the gap-to-baseline. BO is then used to

find a set of training environments with large gap-to-baselines.

Genet is generic, since it does not use handcrafted heuristics to

measure the difficulty of a network environment; instead, it uses

rule-based algorithms, which are abundant in the literature of many

networking and system problems, to generate training curricula.

Moreover, by focusing training on places where RL falls behind

rule-based baselines, Genet directly minimizes the chance of per-

formance regressions relative to the baselines. This is important,

because system operators are more willing to deploy an RL policy

if it outperforms the incumbent rule-based algorithm in production

without noticeable performance regressions.2

We have implemented Genet as a separate module with a uni-

fying abstraction that interacts with the existing codebases of RL

training to iteratively select rewarding environments and promote

them in the course of training. We have integrated Genet with

three existing deep RL codebases in the networking area—adaptive

video streaming (ABR) [4], congestion control (CC) [1], and load

balancing (LB) [3].

It stands to reason that Genet is not without limitations. For

instance, Genet-trained RL policies might not outperform all rule-

based baselines (§5.5 shows that when using a naive baseline to

guide Genet, the resulting RL policy could still be inferior to

stronger baselines). Genet-trained RL policies may also achieve un-

desirable performance in environments beyond the training ranges

(e.g., if we train a congestion-control algorithm on links with band-

width between 0 and 100 Mbps, Genet will not optimize for the

bandwidth of 1 Gbps). Moreover, Genet does not guarantee ad-

versarial robustness which sometimes conflicts with the goal of

generalization [41].

Using a combination of trace-driven simulation and real-world

tests across three use cases (ABR, CC, LB), we show that Genet

improves asymptotic performance by 8–25% for ABR, 14–24% for

CC, 15% for LB, compared with traditional RL training methods.

Genet aims to optimize an RL model’s asymptotic performance

(i.e., in-distribution generalizability), and it does not explicitly opti-

mize the generalization in arbitrary test environments (i.e., out-of-

distribution generalizability). That said, our empirical test results

show that Genet-trained models improve not only asymptotic

performance, but also the performance in unseen network environ-

ments.

The traces and scripts used in Genet are released at https://

github.com/GenetProject/Genet.

2 MOTIVATION

Deep reinforcement learning (RL) trains a deep neural net (DNN)

as the decision-making logic (policy) and is well-suited to many

sequential decision-making problems in networking [22, 31].3 We

use three use cases (summarized in Table 1) to make our discussion

concrete:

• An adaptive bitrate (ABR) algorithm adapts the chunk-level

video bitrate to the dynamics of throughput and playback buffer

(input state) over the course of a video session. ABR policies,

including RL-based ones (Pensieve [32]), choose the next chunk’s

bitrate (output decision) at the chunk boundary to maximize

2An example of this mindset is that a new algorithm must compete with the incumbent
algorithm in A/B testing before being rolled out to production.
3There are rule-based alternatives to DNN-based policies, but they are not as expressive
and flexible as DNNs, which limits their performance. Oboe [5], for instance, sets
optimal hyperparameters for RobustMPC based on the mean and variance of network
bandwidth and as shown in §5.4, is a very competitive baseline, but it performs worse
than the best RL strategy.
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Use case Observed state (policy input) Action (policy output) Reward (performance)

Adaptive Bitrate (ABR)

Streaming

future chunk size, history throughput, current

buffer length

bitrate selected for the

next video chunk

∑
𝑖 (𝛼 · Rebuf𝑖 + 𝛽 · Bitrate𝑖

+ 𝛾 · BitrateChange𝑖 )/𝑛

Congestion Control (CC)
RTT inflation, sending/receiving rate,

avg RTT in a time window, min RTT

change of sending rate in

the next time window

∑
𝑖 (𝑎 · Throughput𝑖

+ 𝑏 · Latency𝑖 + 𝑐 · LossRate𝑖 )/𝑛

Load Balancing (LB)
past throughput, current request size, number

of queued requests per server

server selection for

the current request
−
∑
𝑖 Delay𝑖/𝑛

Table 1: RL use cases in networked systems. Default reward parameters: 𝛼 = −10 (rebuffering in seconds), 𝛽 = 1 (bitrate in Mbps), 𝛾 = −1 (bitrate

change in Mbps), 𝑎 = 120 (throughput in kbps), 𝑏 = −1000 (latency in seconds), 𝑐 = −2000. Details in A.5.

session-wide average bitrate, while minimizing rebuffering and

bitrate fluctuation.

• A congestion control (CC) algorithm at the transport layer

adapts the sending rate based on the sender’s observations of

the network conditions on a path (input state). An example of

RL-based CC policy (Aurora [24]) makes sending rate decisions

at the beginning of each interval (of length proportional to RTT),

to maximize the reward (a combination of throughput, latency,

and packet loss rate).

• A load balancing (LB) algorithm in a key-replicated distributed

database reroutes each request to one of the servers (whose real-

time resource utilization is unknown), based on the request arrival

intervals, resource demand of past requests, and the number of

outstanding requests currently assigned to each server.

We choose these use cases because they have open-source imple-

mentations (Pensieve [4] for ABR, Aurora [1] for CC, and Park [3]

for LB). Our goal is to improve existing RL training in networking.

Revising the RL algorithm per se (input, output, or DNN model) is

beyond our scope.

Network environments: We generate simulated training environ-

ments with a range of parameters, following prior work [24, 31, 32].

An environment can be synthetically generated using a list of pa-

rameters as configuration, e.g., in the context of ABR, a configuration

encompasses bandwidth range, frequency of bandwidth change,

chunk length, etc. Meanwhile, when recorded bandwidth traces are

available (for CC and ABR experiments), we can also create trace-

driven environments where the recorded bandwidth is replayed.

Note that bandwidth is only one dimension of an environment and

must be complemented with other synthetic parameters in order

to create a simulated environment. (Our environment generator

and a full list of parameters are documented in §A.2.) In recent pa-

pers, both trace-driven (e.g., [19, 32]) and synthetic environments

(e.g., [24, 31]) are used to train RL-based network algorithms. We

will explain in §4.2 how our technique applies to both types of

environments.

Traditional RL training: Given a user-specified distribution of

(trace-driven or synthetic) training environments, the traditional

RL training method works in iterations. Each iteration randomly

samples a subset of environments from the provided distribution

and then updates the DNN-based RL policy (via forward and back-

ward passes). For instance, Aurora [24] uses an iteration of 7200

steps (i.e., 30–50 30-second network environments) and applies

the PPO algorithm to update the policy network by simulating the

network environments in each batch.

Several previous efforts have demonstrated the promise of the

traditional RL training—given the distribution of target environ-

ments, an RL policy can be trained to perform well in these envi-

ronments (e.g., [24, 32]). Unfortunately, this approach falls short on

two fronts.

Challenge 1: Training over wide environment distributions.

When the training distribution of network environments has a wide-

spread (e.g., a large range of possible bandwidth values), RL training

tends to result in poor asymptotic performance (model performance

after reaching convergence) even when the test environments are

drawn from the same distribution as training.

In Figure 2, for each use case, we choose three target distributions

(with increasing parameter ranges), labeled RL1/RL2/RL3 ranges of

synthetic environment parameters in Table 3, 4, and 5. Figure 2(a)

compares the asymptotic performance of three RL policies (with dif-

ferent random seeds) with rule-based baselines, MPC [57] for ABR,

BBR [8] for CC, and least-load-first (LLF) policy for LB, in test envi-

ronments randomly sampled from the same ranges. It shows that

RL’s performance advantage over the baselines diminishes rapidly

when the range of target environments expands. Even though RL-

based policies still outperform the baselines on average, Figure 2(b)

reveals a more striking reality—their performance falls behind the

baselines in a substantial fraction of test environments.

An intuitive explanation is that in each RL training iteration, only

a batch of randomly sampled environments (typically 20–50) is used

to update the model, and when the entire training set spans a wide

range of environments, the batches between two iterations may

have dramatically different distributions which potentially push

the RL model to different directions. This causes the training to

converge slowly and makes it difficult to obtain a good policy [36].

Although this problem is not completely avoided in our solution, it

is mitigated by curriculum learning which draws the environments

of a batch from a “narrower” training environment distribution,

thus reducing the discrepancies between batches.

Challenge 2: Low generalizability. Another practical challenge

arises when the training process does not have access to the target

environment distribution. This calls for models with good general-

ization, i.e., the RL policies trained on one distribution also perform

well on a different environment distribution during testing. Unfor-

tunately, existing RL training methods often fall short of this ideal.

Figure 3 evaluates the generalizability of RL-based CC schemes in

two ways.

• First, we train an RL-based CC algorithm on the same range of

synthetic environments as specified in its original paper [24]. We
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Figure 2: Challenges of RL training over a wider range of environments from small (RL1), medium (RL2), to large (RL3).
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(b) RL-based CC trained over one real trace set performs worse on another real
trace set than the rule-based baseline.

Figure 3: Generalization issues of RL-based schemes using CC as an example.

first validate the model by confirming its performance against a

rule-based baseline BBR, in environments that are independently

generated from the same range as training (Figure 3(a); left). Nev-

ertheless, when tested on real-world recorded network traces un-

der the category of “Cellular” and “Ethernet” from Pantheon [56]

(Table 2), the RL-based policy yields much worse performance

than the rule-based baseline.

• Second, we train the RL-based CC algorithm on the “Cellular”

trace set and test it on the “Ethernet” trace set (Figure 3(b); left), or

vice versa (Figure 3(b); right). Similarly, its performance degrades

significantly when tested on a different trace set.

The observations in Figure 3 are not unique to CC. Prior work [19]

also shows a lack of generalization of RL-based ABR algorithms.

Summary: In short, we observe two challenges faced by the tradi-

tional RL training mechanism:

• The asymptotic performance of the learned policies can be sub-

optimal, especially when they are trained over a wide range of

environments.

• The trained RL policies may generalize poorly to unseen network

environments.

3 CURRICULUM LEARNING FOR

NETWORKING
Given these observations regarding the limitations of RL training in

networking, a natural question to ask is how to improve RL training

such that the learned adaptation policies achieve good asymptotic

performance across a broad range of target network environments.4

Curriculum learning: We cast the training of RL-based network

adaptation to the well-studied framework of curriculum learning.

4An alternative is to retrain the deployed RL policy whenever it meets a new domain
(e.g., a new network connection with unseen characteristics), but this does not apply
when the RL policy cannot be updated frequently. Besides, it is also challenging to
precisely detect model drift in the network conditions that necessitate retraining the
RL policy.

Unlike the traditional RL training that samples training environ-

ments from a fixed distribution in each iteration, curriculum learn-

ing varies the training environment distribution to gradually in-

crease the difficulty of training environments, so that training will

see more environments that are more likely to improve, which we

refer to as rewarding environments. In many RL applications, prior

work has shown the promise of curriculum learning, including

faster convergence, higher asymptotic performance, and better gen-

eralization (§6).

The theoretical intuition behind curriculum learning is that a

curriculum allows the model to optimize a family of gradually less

smooth loss functions and prevents it from being trapped in local

minima [7]. In the early stage of the curriculum, easier training

samples are selected to comprise a smoothed loss function that

reveals the big picture and is easier to optimize. The resulting

model serves as a good starting point when more difficult samples

are introduced to the training, reducing the smoothness of the loss

function and making it harder to optimize. By optimizing the model

on a sequence of loss functions with decreasing smoothness, the

curriculum is able to gradually bring the model parameters close

to the global optimum.

However, the challenge of employing curriculum learning lies

in determining which environments are rewarding. Apparently,

the answer to this question varies with applications, but three gen-

eral approaches exist: (1) training the current model on a set of

environments individually to determine in which environment the

training progresses faster; (2) using heuristics to quantify the eas-

iness of achieving model improvement an environment; and (3)

jointly training another model (typically DNN) to select rewarding

environments. Among them, the first option is prohibitively expen-

sive and thus not widely used, whereas the third introduces the

extra complexity of training a second DNN. Therefore, we take a

pragmatic stance and explore the second approach, while leaving

the other two for future work.
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(a) Add X to training (b) Add Y to training

Figure 4: A simple example where adding trace set X to training

has a different effect than adding Y. Adding X to training improves

performance on X only marginally but hurts Y, whereas adding Y

improves the performance on both X and Y.

Why sequencing training environments is difficult: A com-

mon strategy in curriculum learning for RL is to measure environ-

ment difficulty and gradually introduce more difficult environments

to training. To motivate our design choices, we first introduce three

strawman approaches, with different strengths and weaknesses.

They are used to determine how rewarding an environment is.

A good approach should always select network environments in

which the RL model has a large improvement in reward when

trained in them.

Strawman 1: inherent properties. The first idea is to quantify the

difficulty level of an environment using some of its inherent proper-

ties. In congestion control, for instance, network traces with higher

bandwidth variance are intuitively more difficult. This approach,

however, only distinguishes environments that differ in the hand-

picked properties and may not suffice under complex environments

(e.g., adding bandwidth traces with similar variance to training can

have different effects).

Strawman 2: performance of rule-based baselines. Alternatively,

one can use the test performance of a traditional algorithm to in-

dicate the difficulty of an environment. Lower performance may

suggest a more difficult environment [53]. While this method can

distinguish any two environments, it does not hint at how to im-

prove the current RL model during training.

Strawman 3: performance gap to the optimum. To fix the problem

of Strawman 2, one can use the performance gap between the

current RL policy and the optimum instead [19]. If the current

model performs much worse than the optimum in an environment

(e.g., obtained by using ground-truth bandwidth as the bandwidth

prediction), its performance might improve when trained in this

environment. A caveat of this approach is that the computation of

the optimal performance could be prohibitively expensive or even

infeasible. This approach may also fail to improve RL’s performance

in environments that are inherently hard (e.g., highly fluctuating

bandwidth in ABR and CC).

Example: Figure 4 shows a concrete example in ABR, where

“Strawman 3” leads to a suboptimal outcome. (§5.5 will empirically

test these three strawman approaches.) We first pretrain an RL-

based ABR policy which performs poorly on 𝑋 and 𝑌 (two sets of

bandwidth traces from two different environment configurations,

details in §A.3). Since the performance gap between the current RL

model and the optimum is larger on 𝑋 than on 𝑌 , Strawman 3 opts

(a) Trace in X (hard) (b) Trace in Y (improvable)

Figure 5: Contrasting (a) an inherently hard (possibly unsolvable)

environment with (b) an improvable environment. The difference is

that the rule-based policy’s reward is higher than the RL policy in (b),

whereas their rewards are similar in (a).

for adding 𝑋 to the training in the next step. However, Figure 4

shows that training further on 𝑋 yields only a marginal reward

improvement on 𝑋 (and also hurts the performance on 𝑌 ).
Instead, adding 𝑌 to training is a better choice at this point—the

performance on 𝑌 is significantly improved (and it also benefits the

performance on 𝑋 though to a less extent).

To take a closer look, we plot two example traces from𝑋 and𝑌 in

Figure 5: The trace from 𝑋 fluctuates with a smaller magnitude but

more frequently, whereas the trace from 𝑌 fluctuates with a greater

magnitude but much less frequently. However, such observations

cannot generalize to an arbitrary pair of environments or a different

application.

4 DESIGN AND IMPLEMENTATION OF GENET

4.1 Curriculum generation

To identify rewarding environments, the idea of Genet is to find

environments with a large gap-to-baseline, i.e., the RL policy is

worse than a given rule-based baseline by a large margin. At a

high level, adding such environments to training has three practical

benefits.

First, when a rule-based baseline performs much better than the

RL policy in an environment, it means that the RL model may learn

to “imitate” the baseline’s known rules while training in the envi-

ronment, bringing it on par with—if not better than—the baseline. 5

Therefore, a large gap-to-baseline indicates plausible room for the

current RL model to improve. Figure 6 empirically confirms this

with one example ABR policy and CC policy (both are intermedi-

ate models during Genet-based training). For example, among 73

randomly chosen synthetic environment configurations in CC, a

configuration with a larger gap-to-baseline is likely to yield more

improvement when adding its environments to the RL training.

Moreover, this correlation is stronger than using the performance

gap between the current model and the optimum (“Strawman 3”

in §3) to decide which environments are rewarding. Nonetheless,

the model’s training improvement does not only depend on the

gap-to-baseline. Other factors such as training hyperparameters

can affect the reward improvement of an RL model. For example,

too large a learning rate causes the RL model to jump over the

5This may not be true when the behavior of the rule-based algorithm cannot be
approximated by RL’s policy DNN, and we will discuss this issue in §7.
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Figure 6: Compared with the gap-to-optimum (left), the current

model’s gap-to-baseline (right) in an environment is more indicative

of its potential training improvement in the environment.

optima while too small a learning rate slows down the convergence.
In this work, we only focus on the gap-to-baseline and keep the
training hyperparameters (e.g., learning rate, batch size of each
iteration) unchanged in all the experiments.

Second, although not all rule-based algorithms are easily inter-
pretable or completely fail-proof, many of them have tradition-
ally been used in networked systems long before the RL-based ap-
proaches and are considered more trustworthy than black-box RL
algorithms. Therefore, operators tend to scrutinize any performance
disadvantages of the RL policy compared with the rule-based base-
lines currently deployed in the system. By promoting environments
with large gap-to-baselines, Genet directly reduces the possibility
that the RL policy causes performance regressions.

In short, the gap-to-baseline builds on the insight that rule-based
baselines are complementary to RL policies—they are less suscepti-
ble to any discrepancies between training and test environments,
whereas the performance of an RL policy is potentially sensitive to
the environments seen during training. In §5.5, we will discuss the
impact of different choices of rule-based baselines and why gap-
to-baseline is a better way of using the rule-based baseline than
alternatives. It is worth noting that the rewarding environments
(those with large gap-to-baselines) do not have particular meanings
outside the context of a given pair of RL model and baseline. For
instance, when an RL-based CCmodel has a greater gap-to-baseline
in some network environments, it only means that it is easier to
improve the RL model by training it in these environments; it does
not indicate if these environments are easy or challenging to any
traditional CC algorithm.

4.2 Training framework

Figure 7 depicts Genet’s high-level iterative workflow to realize
curriculum learning. Each iteration consists of three steps (which
will be detailed shortly):
1. First, we update the current RL model for a fixed number of

iterations over the current training environment distribution;

New training 
environments

Traditional RL training Sequencing module

Estimating Gap-To-
Baseline

BO-based 
exploration

Rule-based baseline

Current training 
env distribution

Environment 
space

Current RL 
model

Figure 7: Overview of Genet’s training process.

2. Second, we select the environments where the current RL model
has a large gap-to-baseline; and

3. Third, we promote these selected environments in the training
environments distribution used by the RL training process in the
next iteration.

Training environment distribution: We define a distribution of
training environments as a probability distribution over the space of
configurations, each being a vector of 5–6 parameters (summarized
in Table 3, 4, 5) used to generate network environments. An example
configuration is: [BW: 2–3Mbps, BW changing frequency: 0–20s,
Buffer length: 5–10s]. Genet sets the initial training environment
distribution to be a uniform or exponential distribution along with
each parameter, and automatically updates the distribution used in
each iteration, effectively generating a training curriculum.

When recorded traces are available, Genet can augment the
training with trace-driven environments as follows. Here we use
bandwidth traces as an example. The first step is to categorize each
bandwidth trace along with the bandwidth-related parameters (i.e.,
bandwidth range and variance in our case). Each time a configura-
tion is selected by RL training to create new environments, with
a probability of 𝑤 (30% by default), Genet samples a bandwidth
trace whose bandwidth-related parameters fall into the range of
the selected configuration.

In §5.2, we will show that adding trace-driven environments to
training improves the performance of RL policies, especially when
tested in unseen real traces from the same distribution. That said,
even if we do not use trace-driven environments in RL training,
our trained RL policies still outperform the traditional method of
training RL over real traces or synthetic traces.
Key components: Each round of Genet starts with training
the current model for a fixed number of iterations (defaults to
10). Here, Genet reuses the traditional training method in prior
work (i.e., uniform sampling of training environments per iteration),
which makes it possible to incrementally apply Genet to existing
codebases (see our implementation in §4.3). Recent work on domain
randomization [39, 45, 52] also shows that a similar training process
can benefit the generalization of RL policies [39, 45, 52]. The details
of the training process are described in Algorithm 1.

After a certain number of iterations, the current RL model and a
pre-determined rule-based baseline are given to a sequencingmodule

to search for the environments where the current RL model has a
large gap-to-baseline. Ideally, we want to test the current RL model
on all possible environments and identify the ones with the largest
gap-to-baseline, but this is prohibitively expensive. Instead, we use
Bayesian Optimization [17] (BO) as follows. We view the expected
gap-to-baseline over the environments created by configuration 𝑝
as a function of 𝑝 :𝐺𝑎𝑝 (𝑝) = 𝑅(𝜋𝑟𝑢𝑙𝑒 , 𝑝) − 𝑅(𝜋𝑟𝑙

𝜃
, 𝑝), where 𝑅(𝜋, 𝑝)
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is the average reward of a policy 𝜋 (either the rule-based baseline

𝜋𝑟𝑢𝑙𝑒 or the RL model 𝜋𝑟𝑙
𝜃
) over 𝑘 (10 by default) environments

randomly generated by configuration 𝑝 . BO then searches in the

environment space for the configuration that maximizes 𝐺𝑎𝑝 (𝑝).
Once a new configuration is selected, the environments gener-

ated by this configuration are then added to the training distribution

as follows. When the RL training process samples a new training

environment, it will choose the new configuration with𝑤 probabil-

ity (30% by default) or uniformly sample a configuration from the

old distribution with 1 −𝑤 probability (70% by default), and then

create an environment based on the selected configuration. Next,

training is resumed over the new environment distribution.

It is important to notice that the BO-based search does not carry

its states when searching rewarding environments for a new RL

model. Instead, Genet restarts the BO search every time the RL

model is updated. The reason is that the rewarding environments

can change once the RL model changes.

Design rationale: The process described above embeds several

design decisions that make it efficient.

How to choose rule-based baselines? For Genet to be effective,

the baselines should not fail in simple environments; otherwise,

Genet would ignore them given that the RL policy could easily

beat the baselines. For instance, when using Cubic as the baseline

in training RL-based CC policies, we observe that the RL policy is

rarely worse than Cubic along the dimension of random loss rate,

because Cubic’s performance is susceptible to random packet losses.

That said, we find that the choice of baselines does not significantly

impact the effectiveness of Genet, although a better choice tends

to yield more improvement (as shown in §5.5).6

Why is BO-based exploration effective? Genet models the selec-

tion of network environments that maximize gap-to-baseline as

a parameter search procedure in a high-dimensional space—each

dimension of the space is a configuration of the network environ-

ment (e.g., link latency), each point in the space is a set of network

environments with the same configurations, and the desired points

are those whose environments have large gap-to-baselines. This

problem has two features: (1) the environment search space is high-

dimensional, and (2) evaluating the gap-to-baseline of a point in

the space is computationally expensive (partly due to the variance

among the environments with the same configurations). In this

context, BO is merely one of the candidate solutions among several

others to perform the parameter search. In §5.5, we will compare

BO’s efficiency with other candidate solutions and show that BO is

efficient at identifying rewarding environments.

Why not set a threshold for the gap-to-baseline of the selected

environments? While Genet uses BO to search rewarding environ-

ments with a fixed number of steps (default is 15), an alternative

is to run BO until it finds an environment configuration whose

gap-to-baseline is above a threshold. However, the latter strategy

may not end (or take a long time to finish) if the RL model is already

better than the baseline in most environments, which is possible

during training. Moreover, the threshold introduces another hyper-

parameter to be tuned with domain knowledge.

6One possible refinement in this regard is to use an “ensemble” of rule-based heuristics,
and let the training scheduler focus on environments where the RL policy falls short
of any one of a set of rule-based heuristics.

Reward = Test (RL_Model, ConfigDistrib, NumTests)

RL_Model = Train (ConfigDistrib, NumIters)

Reward = Test (Baseline, ConfigDistrib, NumTests)

Environment config set

Figure 8: Components and interfaces needed to integrate Genet with

an existing RL training codebase.

Impact of forgetting? It is important that we train models over

the full range of environments. Genet does begin the training over

the whole space of environment in the first iteration, but each

subsequent iteration introduces a new configuration, thus diluting

the percentage of random environments in training. This might lead

to the classic problem of forgetting—the trained model may forget

how to handle environments seen before. While we do not address

this problem directly, we have found that Genet is affected by this

issue only mildly. The reason is that Genet stops the training after

changing the training distribution for 9 times, and by then, the

original environment distribution still accounts for about 10%.7

4.3 Implementation

Genet is fully implemented in Python and Bash, and has been

integrated with three existing RL training codebases. Next, we

describe the interface and implementation of Genet, as well as

optimizations for eliminating Genet’s performance bottlenecks.

API: Genet interacts with an existing RL training codebase with

two APIs (Figure 8): Train signals the RL to continue the training

using the given distribution of environment configurations and

returns a snapshot of the model after a specified number of training

iterations; Test calculates the average reward of a given algorithm

(RL model or a baseline) over a specified number of environments

drawn from the given distribution of configurations.

Integration with RL training: We have integrated Genet with

Pensieve ABR [4], Aurora CC [1], and Park LB [3], which use dif-

ferent RL algorithms (e.g., A3C, PPO) and network simulators (e.g.,

packet level, chunk level). We implement the two APIs above using

functionalities provided in the existing codebase.

Rule-based baselines: Genet takes advantage of the fact that

many RL training codebases (including our three use cases) have

already implemented at least one rule-based baseline (e.g., MPC in

ABR, Cubic in CC) that runs in their simulators. In addition, we also

implemented a few baselines by ourselves, including the shortest-

job-first in LB, and BBR in CC. The implementation is generally

straightforward, but sometimes the simulator (though sufficient

for the RL policy) lacks crucial features for a faithful implementa-

tion of the rule-based logic. Fortunately, Genet-based RL training

merely uses the baseline to select training environments, so the

consequence of having a suboptimal baseline is not considerable.

5 EVALUATION

The key takeaways of our evaluation are:

7When we impose a minimum fraction of “exploration” (i.e., uniformly randomly
picking an environment from the original training distribution) in the training (which
is a typical strategy to prevent forgetting [58]), Genet’s performance becomes worse.
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Name
Use
case

Training
# traces, total length (s)

Testing
# traces, total length (s)

FCC ABR 85, 105.8k 290, 89.9k
Norway ABR 115, 30.5k 310, 96.1k
Ethernet CC 64, 1.92k 112, 3.35k
Cellular CC 136, 4.08k 121, 3.64k

Table 2: Network traces used in ABR and CC tests.

• Across three RL use cases in networking, Genet improves the

performance of RL algorithms when tested in new environments

drawn from the training distributions that include wide ranges

of environments (§5.2).

• Genet improves the generalization of RL performance, allowing

models trained over synthetic environments to perform well even

in various trace-driven environments as well as on real-world

network connections (§5.3).

• Genet-trained RL policies have a much higher chance of out-

performing various rule-based baselines specified during Genet-

based RL training (§5.4).

• Finally, the design choices of Genet, such as its curriculum learn-

ing strategy and BO-based search, are shown to be effective com-

pared to seemingly natural alternatives (§5.5).

Given the success of curriculum learning in other RL domains,

these improvements are not particularly surprising. However, by

showing for the first time that curriculum learning facilitates RL

training in networking, we hope to inspire more follow-up research

in this direction.

5.1 Setup

We train Genet for three RL use cases in networking, using their

original simulators: congestion control (CC) [1], adaptive bitrate

streaming (ABR) [4], and load balancing (LB) [3]. As discussed in

§4.1, we train and test RL policies over two types of environments.

Synthetic environments: We generate synthetic environments

using the parameters described in detail in §A.2 and Table 3,4,5. We

choose these environment parameters to cover a variety of factors

that affect RL performance. For instance, in CC tests, our environ-

ment parameters specify bandwidth (e.g., the range, variance, and

how often it changes), delay, queue length, etc.

Trace-driven environments: We also use real traces for CC and

ABR (summarized in Table 2) to create trace-driven environments

(in both training and testing), where the bandwidth time series

are set by the real traces, but the remaining environment param-

eters (e.g., queue length or target video buffer length) are set as

in the synthetic environments. We test ABR policies by streaming

a pre-recorded video over 290 traces from FCC broadband mea-

surements [11] (labeled “FCC”) and 310 cellular traces [43] (labeled

“Norway”). We test CC policies on 121 cellular traces (labeled “Cel-

lular”) and 112 Ethernet traces (labeled “Ethernet”) collected by the

Pantheon platform [56].

Baselines: We compare Genet-trained policies with several base-

lines. First, traditional RL trains RL policies by uniformly sampling

environments from the target distribution per iteration. We train

three types of RL policies (RL1, RL2, RL3) over fixed-width uniform

distribution of synthetic environments, specified in Table 3, 4, 5.

From RL1 to RL3, the sizes of their training environment ranges

are in ascending order.

RL1 RL2 RL3 Genet0
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Figure 9: Comparing the performance of Genet-trained RL policies

for CC, ABR, and LB, with baselines in unseen synthetic environments

drawn from the training distribution, which sets all environment

parameters to their full ranges.

Wealso train RL policies over trace-driven environments, i.e., ran-

domly picking bandwidth traces from one of the recorded sets. This

is the same as prior work, except that we also vary non-bandwidth-

related parameters (e.g., queue length, buffer length, video length,

etc) to increase its robustness. In addition, we test an early attempt

to improve RL [19] which generates new training bandwidth traces

that maximize the gap between the RL policy and optimal adapta-

tion with a non-smoothness penalty (§5.5).

Second, traditional rule-based algorithms include BBA [23] and

RobustMPC [57] for ABR, PCC-Vivace [14], BBR [8] and CUBIC

for CC, and least-load-first (LLF) for LB.8 They can be viewed as a

reference point for traditional non-ML solutions.

5.2 Asymptotic performance

We first compare Genet-trained policies and traditionally trained

RL policies, in terms of their asymptotic performance (i.e., test per-

formance over new test environments drawn independently from

the training distribution). In other words, we train RL policies over

environments from the target distribution and test them in new

environments from the same distribution.

Synthetic environments: We first test Genet-trained CC, ABR,

and LB policies under their perspective RL3 synthetic ranges (where

all parameters are set to their full ranges) as the target distribu-

tion. As shown in Figure 2, in these training ranges, traditional

RL training yields little performance improvement over the rule-

based baselines. Figure 9 compares Genet-trained CC, ABR, and

LB policies with their respective baselines over 200 new synthetic

environments randomly drawn with the target distribution.

Across three use cases, we can see that Genet consistently im-

proves over traditional RL-trained policies by 8–25% for ABR, 14–

24% for CC, 15% for LB, compared with traditional RL training

methods. We notice that there is no clear ranking among the three

traditional RL-trained policies. This is because RL1 helps training

to converge better but only sees a small slice of the target distribu-

tion, whereas RL3 sees the whole distribution but cannot train a

good model. In contrast, Genet outperforms them, as curriculum

learning allows it to learn more efficiently from the large target

distribution.

To show the performance more thoroughly, Figure 10 picks ABR

as an example and shows the performance across different values

along with six environment parameters. We vary one parameter at

a time while fixing other parameters at the same default values (see

Table 3, 4, 5).We see that Genet-trained RL policies enjoy consistent

performance advantages (in reward) over the RL policies trained by

8By default, we use RobustMPC as MPC and PCC Vivace-latency as Vivace, since they
appear to perform better than their perspective variants.
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Figure 10: Test of ABR policies along individual env-parameters.
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Figure 11: Test of LB policies along individual env-parameters.

traditional RL-trained models. This suggests that the improvement

of Genet shown in Figure 9 is not a result of improving rewards

in some environments at the cost of degrading rewards in others;

instead, Genet improves rewards in most cases. Figure 11 shows

that in the simulated environments [3], the Genet-trained LB policy

outperforms its baselines by 15%.

Trace-driven environments: Next, we set the target environment

distributions of ABR and CC to be the environments generated from

multiple real-world trace sets (FCC and Norway for ABR, Ethernet

and Cellular for CC). We partition each trace set as listed in Table 2.

Genet trains ABR and CC policies by combining trace-driven en-

vironments and synthetic environments (described in §4.2). For a

thorough comparison, both Genet and the traditional RL training

have access to the training portion of the real traces as well as

the synthetic environments. We vary the ratio of real traces and

synthetic environments and feed them to the traditional RL training

method, e.g., if the ratio of real traces is 20%, then the traditional

RL training randomly draws a trace-driven environment with 20%

probability and synthetic environments with 80% probability. That

is, we test different ways for the traditional RL training to com-

bine the training traces and synthetic environments. Figure 12 tests

Genet-trained ABR and CC policies with their respective tradi-

tional RL-trained baselines over new environments generated from

the traces in the testing set. Figure 12 shows that Genet-trained

policies outperform traditional RL training by 17–18%, regardless of

the ratio of real traces, including when training the model entirely

on real traces.

5.3 Generalization

Next, we take the RL policies of ABR and CC trained (by Genet

and other baselines) entirely over synthetic environments (the RL3
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Figure 12: Asymptotic performance of Genet-trained CC policies (a)

and ABR policies (b) and baselines, when the real network traces are

randomly split into a training set and a test set.
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Figure 13: Generalization test: Training of various methods is done

entirely in synthetic environments, but the testing is over various real

network trace sets.

synthetic environment range) and test their generalization in trace-

driven environments generated by the ABR (and CC) testing traces

in Table 2.

Figure 13 shows that they perform better than traditional RL

baselines trained over the same synthetic environment distribution.

Though Figure 13 uses the same testing environments as Figure 12

and has a similar relative ranking between Genet and traditional

RL training, the implications are different: Figure 13 also shows

that when the real traces are not accessible in training, Genet

can produce models with better generalization in real-trace-driven

environments than the baselines, whereas Figure 12 shows their

performance when the real traces are actively used in training of

Genet and the baselines.

5.4 Comparison with rule-based baselines

Impact of the choice of rule-based baselines: Figure 14 shows

the performance of Genet-trained policies when using different

rule-based baselines. We choose MPC and BBA as baselines in the

ABR experiments and BBR and Cubic as baselines in CC experi-

ments, respectively. We observe that in all cases, Genet-trained

policies outperform their respective rule-based baselines.

What if Genet uses naive rule-based baselines? As explained

in §4.2, the rule-based baseline should have a reasonable (though not

necessarily optimal) performance; otherwise, it would be unable to

indicate when the RL policy can be improved. To empirically verify

it, we use two unreasonable baselines: choosing the highest bitrate

when rebuffer in ABR, and choosing the highest loaded server in

LB. In both cases, the BO-based search fails to find useful training
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Figure 14: Genet outperforms the rule-based baselines used in its

training.
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Figure 15: Fraction of real traces where Genet-trained policies (and

traditional RL) are better than the rule-based baselines.

environments, because the RL policy very quickly outperforms the

naive baseline everywhere. That said, the negative impact of using a

naive baseline is restricted to the selection of training environments,

rather than the RL training itself (a benefit of decoupling baseline-

driven environment selection and RL training), so in the worst case,

Genet would be roughly as good as traditional RL training.

How likely is Genet to outperform rule-based baselines?

One of Genet’s benefits is to increase how often the RL policy is

better than the rule-based baseline used in Genet. In Figure 15, we

create various versions of Genet-trained RL policies by setting the

rule-based baselines to be Cubic and BBR (for CC), and MPC and

BBA (for ABR). Compared to RL1, RL2, RL3 (unaware of rule-based

baselines), Genet-trained policies remarkably increase the fraction

of real-world traces (emulated) where the RL policy outperforms

the baseline used to train them. This suggests that operators can

specify a rule-based baseline, and Genet will train an RL policy

that outperforms it with high probability.

Breakdown of performance: Figure 17 takes one Genet-trained

ABR policy (with MPC as the rule-based baseline) and one Genet-

trained CC policy (with BBR as the rule-based baseline) and com-

pares their performance with a range of rule-based baselines along

with individual performancemetrics.We see that the Genet-trained

ABR and CC policies stay on the frontier and outperform other

baselines.

Real-world tests: We also test the Genet-trained ABR and CC

policies in five real wide-area network paths (without emulated

delay/loss), between four nodes reserved from OpenNetLab [2, 16],

one laptop at home, and two cloud servers (§A.4), allowing us to

observe their interactions with real network traffic. For statistical

confidence, we run the Genet-trained policies and their baselines

back-to-back, each at least five times, and show their performance

in Figure 16. The system metrics behind each reward value are

shown in Table 6 and Table 7. In all but two cases, Genet out-

performs the baselines. On Path-2, Genet-trained ABR has little

improvement, because the bandwidth is always much higher than

the highest bitrate, and the baselines will simply use the highest bi-

trate, leaving no room for improvement. On Path-3, Genet-trained

CC has negative improvement, because the network has a deeper

queue than used in training, so RL cannot handle it well. This is

an example where Genet can fail when tested out of the range of

training environments. These results do not prove that the poli-

cies generalize to all environments; instead, they show Genet’s

performance in a range of network settings.

5.5 Understanding Genet’s design choices

Alternative curriculum-learning schemes: Figure 18 compares

Genet’s training curve with that of traditional RL training and

three alternatives for selecting training environments described in

§3. CL1 uses hand-picked heuristics (gradually increasing the band-

width fluctuation frequency in the training environments),CL2 uses

the performance of a rule-based baseline (gradually adding environ-

ments where BBR for CC and MPC for ABR performs badly), and

CL3 adds traces where the current RL model is much worse than

the optimum (whereas Genet picks the traces where the current

RL model is much worse than a rule-based baseline). Compared to

these baselines, In Figure 18, we show that Genet’s training curves

have faster ramp-ups, suggesting that with the same number of

training iterations, Genet can arrive at a much better policy, which

corroborates the reasoning in §3.

In addition, “Robustifying” [19]9 (which learns an adversarial

bandwidth generator) also tries to improve ABR logic by adding

more challenging environments to training. For a more direct com-

parison with Genet, we implement a variant of Genet where BO

picks configurations that maximize the gap between RL and the

optimal reward (penalized by bandwidth non-smoothness with dif-

ferent weights of 𝑝). Figure 19 compares the resulting RL policies

with Genet-trained RL policy and MPC as a baseline on the syn-

thetic traces in Figure 10. We see that they perform worse than

Genet-trained ones and that by changing the BO’s environment se-

lection criteria, Genet becomes less effective. Genet outperforms

Robustifying, because the non-smoothness metric used in [19] may

not completely capture the inherent difficulty of bandwidth traces

(Figure 5 shows a concrete example).

BO-based search efficiency: Genet uses BO to explore the multi-

dimensional environment space environment to find the environ-

ment configuration with a large gap-to-baseline. While BO may not

always find the single optimal point in arbitrary blackbox function

between environment parameters and gap-to-baseline, we found

it to be a pragmatic solution. To show it, we randomly choose an

intermediate RL model during the Genet training of ABR and CC.

Figure 20 shows the gap-to-baseline of the configuration selected by

BO for each model within 15 search steps. Within a small number

of steps, it can identify a configuration that is almost as good as

randomly searching for 100 points, which is much more expensive.

Figure 20 also includes the grid search as a reference, which starts

with all configurations initialized to their respective midpoints and

then searches and updates the best value for each configuration

one by one. We observe that it does not converge as fast as BO.

9In lack of a public implementation, we follow the description in [19] (e.g., non-
smoothness weight) and apply it to Pensieve (with the only difference being that for
fair comparisons with other baselines, we apply it on Pensieve trained on our synthetic
training environments). We have verified that our implementation of Robustifying
achieves similar improvements in the setting of original paper. More details are in
Appendix A.6.
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(a) ABR (b) CC

Figure 16: Testing ABR and CC policies in real-world environments.
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Figure 17: RL-based ABR and CC vs. rule-based baselines.
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Figure 18: Genet’s training ramps up faster than alternative cur-

riculum learning strategies.
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performance by generating adversarial bandwidth traces, and vari-

ants of Genet using Robustifying’s criteria in BO-based environment

selection.

6 RELATEDWORK

Improving RL for networking: Some of our findings regarding

the lack of generalization corroborate those in previous work [13,

19, 24, 32, 44, 54]. To improve RL for networking use cases, prior

work has attempted to apply and customize techniques from the ML
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Figure 20: BO-based search is more efficient at finding environments

with large gap-to-baselines than random exploration in the environ-

ment configuration space.

literature. For instance, [19] applies adversarial learning by generat-

ing relatively smooth bandwidth traces that maximize the RL regret

w.r.t. optimal outcomes, [15, 26] show that the generalization of RL

can be improved by incorporating training environments where

a given RL policy violates pre-defined safety conditions, [46, 47]

incorporate randomization in the evaluation of RL-based systems,

and Fugu [55] achieves a similar goal through learning a transmis-

sion time predictor in situ. Other proposals seek to safely deploy a

given RL policy in new environments [33, 44, 49]. In many ways,

Genet follows this line of work, but it is different in that it system-

atically introduces curriculum learning, which has underpinned

many recent enhancements of RL and demonstrates its benefits

across multiple applications.

Curriculum learning for RL: There is a substantial literature on

improving deep RL with curricula ([21, 36, 40] give more compre-

hensive surveys on this subject). Each component of curriculum

learning has been extensively studied, including how to generate

tasks (environments) with potentially various difficulties [48, 50],

how to sequence tasks [42, 51], and how to add a new task to

training (transfer learning). In this work, we focus on sequencing

tasks to facilitate RL training. It is noticed that, for general tasks

that do not have a clear definition of difficulty (like networking

tasks), optimal task sequencing is still an open question. Some ap-

proaches, such as self-paced learning [28] advocate the use of easier

training examples first, while the other approaches prefer to use

harder examples first [9]. Recent work tries to bridge the gap by

suggesting that an ideal next training task should be difficult for

the current model’s hypothesis, while it is also beneficial to prefer

easier points with respect to the target hypothesis [21]. In other

words, we should prefer an easy environment that the current RL

model cannot handle well, which confirms the intuition elaborated

in Bengio’s seminal paper [7], which hypothesizes that “it would

be beneficial to make learning focus on ‘interesting’ examples that

are neither too hard nor too easy.” Genet is an instantiation of this
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idea in the context of networking adaptation, and the way to iden-

tify the rewarding (or “interesting”) environments is by using the

domain-specific rule-based schemes to identify where the current

RL policy has a large room for improvement.

Automatic generation of curricula also benefits generalization,

particularly when used together with domain randomization [39].

Several schemes boost RL’s training efficiency by iteratively creat-

ing a curriculum of challenging training environments (e.g., [12, 35])

where the RL performance is much worse than the optimal out-

come (i.e., maximal regret). When the optimal policy is unavailable,

they learn a competitive baseline [12] to approximate the optimal

policy or a metric [35] to approximate the regret. Genet falls in

this category, but proposes a domain-specific way of identifying

rewarding environments using rule-based algorithms.

Some proposals in safe policy improvement (SPI) for RL also use

rule-based schemes [18, 29], though for different purposes than

Genet. While Genet uses the performance of rule-based schemes

to identify where the RL policy can be maximally improved, SPI

uses the decisions of rule-based algorithms to avoid violation of

failures during training.

7 DISCUSSION

Does a small gap-to-baseline always mean that an RL model

has small improvement when trained on it?

Although a small gap-to-baseline on a network environment indi-

cates that the RL model already performs quite closely with the

rule-based baseline, there is still a chance that the RLmodel could be

greatly improved when trained in that environment. This is because

if the rule-based baseline performs very badly in an environment,

the gap-to-baseline will no longer be indicative of the potential im-

provement of RL training. For example, Cubic may perform poorly

on a high-bandwidth link with occasional random packet loss, as

Cubic does not differentiate random packet loss and congestion-

induced loss, causing it to lower congestion window size when the

available bandwidth does not drop. In such cases, even if an RL

model has a small gap-to-baseline with Cubic, there could still be

room for the RL model to improve performance, but Genet may

not choose to prioritize such environments. That said, this problem

could be mitigated by using a more performant baseline or an “en-

semble” of existing baselines (i.e., measuring the maximum gap to

any baseline from a set).

Does training in environments of large gap-to-baseline al-

ways lead to large RL model improvement?

Unfortunately, the answer is not always. RL models may not al-

ways be able to approximate the performance of rule-based base-

lines, e.g., due to an RL model’s coarse decision granularity. For

instance, Aurora (an RL-based CC) is a monitor-interval-based CC

algorithm. Each monitor interval needs to be long enough to accu-

mulate enough packet acks (e.g., 10–50) to compute the features

(throughput, latency, etc.) for the RL model to select the sending

rate. In contrast, traditional TCP algorithms like Cubic and BBR

can update sending rate (cwnd) on the arrival of each packet ack.

Thus, Aurora has a much coarser decision granularity than tradi-

tional TCPs, rendering it hard for the RL model to approximate the

traditional TCP’s behavior when the network condition suddenly

changes. For instance, during sudden bandwidth drops and rapid

queue buildups, the inter-packet interval dramatically increases,

and so does Aurora’s monitor interval, whereas TCP Cubic or BBR

can still update its sending rate on each packet ack. In these cases,

Aurora will never ramp up or reduce sending rate as fast as its

rule-based baselines, so even with a large gap-to-baseline in such

environments, Aurora may not see a large reward improvement.

What if a rule-based baseline does not exist?

The current Genet training framework requires the existence of

a rule-based baseline for the target networking problem. If the

problem does not have a well-studied rule-based baseline, there are

three alternative training methods that Genet can fall back to. First,

Genet can fall back on traditional RL training. Although it loses the

benefits of curriculum learning, it may still produce a reasonable

RL-based policy. Second, we can use the performance gap between

an optimal solution based on ground truth knowledge (such as

future bandwidth variation) and the current RL model as the guid-

ance of rewarding network environment selection. [19] trains an

ABR RL model using network traces from a bandwidth-generating

model. The training of the bandwidth-generating model is then

guided by the performance gap between the optimal solution and

the current RL model. This training method works well when the

optimal solution is feasible and computationally cheap. Third, a

trained RL model can be treated as a rule-based baseline. [12] trains

two RL models (with identical model architecture) competitively

on the environments produced by an adversarial generator. The

adversarial generator is a neural network that aims to maximize the

reward difference between the two RL models. However, the train-

ing complexity increases due to the increased number of models to

be trained. Even though Genet can fall back on alternative training

methods, how to extend it to work in applications domains that do

not have an existing rule-based baseline remains to be investigated.

8 CONCLUSION

We present Genet, a new training framework to improve the train-

ing of deep RL-based network adaptation algorithms. For the first

time, we introduce curriculum learning to the networking domain

as the key to reaching better RL performance and generalization.

To make curriculum learning efficient in networking, the main

challenge is how to automatically identify the “rewarding” environ-

ments that can maximally benefit from retraining. Genet addresses

this challenge with a simple-yet-efficient idea that highly rewarding

network environments are where the current RL performance falls

significantly behind that of a rule-based baseline scheme. Our evalu-

ation on three RL use cases shows that Genet improves RL policies

(in both performance and generalization) in various environments

and workloads.

Ethics: This work does not raise any ethical issues.
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A APPENDICES

Appendices are supportingmaterial that has not been peer-reviewed.

A.1 Details of RL implementation

The input of RL algorithm consists of a space of configurations, an

initial policy parameters and predefined total number of iterations

to train. The space of configurations is constructed by ranges of

environment configurations. Each range is marked by the config-

uration’s min and max values. Within a training iteration, each

dimension of the space of configurations is uniformly sampled to

create 𝐾 configurations. For each configuration, 𝑁 random envi-

ronments are created. Thus, rollouts are collected by running the

policy on total 𝐾 ×𝑁 environments to update the policy. When the

policy is updated for the predefined number of iterations, the RL

algorithm stops training and outputs a trained policy.

Algorithm 1 Traditional Reinforecment Learning (RL)

Input: Ω: space of configurations, 𝜃 : initial policy parameters, 𝑁𝑖𝑡𝑒𝑟𝑠 : # of

iterations

Output: 𝜃 : returned policy parameters

1: for 𝑖 from 1 to 𝑁𝑖𝑡𝑒𝑟𝑠 do

2: Φ𝑟𝑎𝑛𝑑 ← ∅

3: for 1 to 𝐾 do ⊲ 𝐾 : # configs per iteration

4: 𝑝𝑖 ∼ 𝑅𝑎𝑛𝑑𝑜𝑚 (Ω) ⊲ Uniformly sampled config in Ω
5: for 1 to 𝑁 do ⊲ 𝑁 : # random envs per config

6: 𝐸 ← 𝑆 (𝑝𝑖 ) ⊲ Create a simulated env by 𝑝𝑖
7: rollout 𝜙 ∼ 𝜋𝜃 ( ·;𝐸) ⊲ Rollout policy 𝜋𝜃 on 𝐸
8: Φ𝑟𝑎𝑛𝑑 ← Φ𝑟𝑎𝑛𝑑 ∪ 𝜙
9: end for

10: end for

11: with Φ𝑟𝑎𝑛𝑑 update:

12: 𝜃 ← 𝜃 + 𝜈 �𝜃 𝐽 (𝜋𝜃 ) ⊲ Gradient update with rate 𝜈
13: end for

14: return 𝜃

Algorithm 2 Genet training framework

Input: Ω: uniform configuration distribution (equal probability on each

configuration), 𝜋𝑟𝑢𝑙𝑒 : rule-based policy.

Output: 𝜃 : final RL policy parameters

1: function Genet(Ω, 𝜋𝑟𝑢𝑙𝑒 )

2: 𝜃 ← Random initial policy parameters

3: Ω𝑐𝑢𝑟 ← Ω ⊲ Ω𝑐𝑢𝑟 will be updated and used for training

4: for from 1 to 𝑁𝑖𝑡𝑒𝑟 do ⊲ # of exploration iterations

5: BO.initialize(Ω) ⊲ Initialize with full config space Ω
6: for from 1 to 𝑁𝑏𝑜𝑇𝑟𝑖𝑎𝑙𝑠 do ⊲ # of trial configs by BO

7: 𝑝 ← BO.getNextChoice()

8: 𝑎𝑑𝑣 ← CalcBaselineGap(𝑝, 𝜋𝑟𝑙
𝜃 , 𝜋𝑟𝑢𝑙𝑒 )

9: BO.update(𝑝, 𝑎𝑑𝑣)
10: end for

11: 𝑝𝑛𝑒𝑤 ←BO.getDecision()

12: ⊲ Weight new config 𝑝𝑛𝑒𝑤 by 𝑤 and old configs by 1 − 𝑤
13: Ω𝑐𝑢𝑟 ← (1 − 𝑤) · Ω𝑐𝑢𝑟 + 𝑤 · {𝑝𝑛𝑒𝑤 }

14: 𝜃 ←UniformDomainRand(Ω𝑐𝑢𝑟 , 𝜃, 𝑁𝑖𝑡𝑒𝑟𝑠 )

15: end for

16: return 𝜃
17: end function

18: function CalcBaselineGap(𝑝, 𝜋𝑟𝑙
𝜃 , 𝜋𝑟𝑢𝑙𝑒 )

19: Initialize: 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ← ∅

20: for 1 to 𝑁𝑇𝑒𝑠𝑡𝑠 do ⊲ # of reward comparisons

21: 𝐸 ← 𝑆 (𝑝) ⊲ Create a simulated env by 𝑝𝑖
22: rollout 𝜙𝑟𝑙 ∼ 𝜋𝑟𝑙

𝜃 ( ·;𝐸) ⊲ Rollout RL 𝜋𝑟𝑙

23: rollout 𝜙𝑟𝑢𝑙𝑒 ∼ 𝜋𝑟𝑢𝑙𝑒 ( ·;𝐸) ⊲ Rollout rule-based 𝜋𝑟𝑢𝑙𝑒

24: add 𝑅𝑒𝑤𝑎𝑟𝑑 (𝜙𝑟𝑢𝑙𝑒 ) − 𝑅𝑒𝑤𝑎𝑟𝑑 (𝜙𝑟𝑙 ) to 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
25: end for

26: return mean(𝑠𝑎𝑚𝑝𝑙𝑒𝑠)
27: end function

A.2 Trace generator logic

ABR: For the simulation in ABR, the link bandwidth trace has the

format of [timestamp (s), throughput (Mbps)]. Our synthetic trace

generator includes 4 parameters: minimum BW (Mbps), maximum

BW (Mbps), BW changing interval (s), and trace duration (s). Each

timestamp represents one second with a uniform [-0.5, 0.5] noise.

Each throughput follows a uniform distribution between [min BW,

max BW]. The BW changing interval controls how often through-

put change over time, with uniform [1, 3] noise. Trace duration

represents the total time length of the current trace.

CC: The trace generator in the CC simulation takes 6 inputs: max-

imum BW (Mbps), BW changing interval (s), link one-way latency

(ms), queue size (packets), link random loss rate, delay noise (ms),

and duration (s). It outputs a series of timestamps with 0.1s step

length and dynamic bandwidth series. Each bandwidth value is

drawn from a uniform distribution of range [1, max BW] Mbps.

The BW changing interval allows bandwidth to change every cer-

tain seconds. The link one-way latency is used to simulate packet

RTT. The queue size simulates a single queue in a sender-receiver

network. Link random loss rate determines the chance of random

packet loss in the network. Delay noise determines how large a

Gaussian noise is added to a packet. The trace duration is deter-

mined by the duration input.

LB: We use the similar workload traces generator as the Park [3]

project, where jobs arrive according to a Poisson process, and the
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ABR Parameter RL1 RL2 RL3 Default Original

Max playback buffer (s) [2, 10] [2, 50] [2, 100] 60 60

Video chunk length (s) [1, 4] [1, 6] [1, 10] 4 4

Min link RTT (ms) [20, 30] [20, 220] [20, 1000] 80 80

Video length (s) [40, 45] [40, 200] [40, 400] 196 196

Bandwidth change interval (s) [2, 2] [2, 20] [2, 100] 5

Max link bandwidth (Mbps) [2, 5] [2, 100] [2, 1000] 5

Table 3: Parameters in ABR simulation. Colored rows show the configurations (and their ranges) used in the simulator in the original paper. The

synthetic trace generator is described in §A.2.

CC Parameter RL1 RL2 RL3 Default Original

Maximum link bandwidth (Mbps) [0.5, 7] [0.4, 14] [0.1, 100] 3.16 [1.2, 6]

Minimum link RTT (ms) [205, 250] [156, 288] [10, 400] 100 [100, 500]

Bandwidth change interval (s) [11, 13] [8, 3] [0, 30] 7.5

Random loss rate [0.01, 0.014] [0.007, 0.02] [0, 0.05] 0 [0, 0.05]

Queue (packets) [2, 6] [2, 11] [2, 200] 10 [2, 2981]

Table 4: Parameters in CC simulation. Colored rows show the configurations (and their ranges) used in the simulator in the original paper. The

synthetic trace generator is described in §A.2. The range of RL1 is defined as 1/9 of the range of RL3 and the range of RL2 is defined as 1/3 of RL3.

The CC parameters shown here for RL1 and RL2 are example sets.

LB Parameter RL1 RL2 RL3 Default Original

Service rate [0.1, 2] [0.1, 5] [0.1, 10] [0.5, 1.0, 2.0] [2, 4]

Job size (byte) [100, 200] [100, 103] [1, 104] 2000 [100, 1000]

Job interval (ms) [0.01, 0.05] [0.01, 0.1] [0.1, 1] 0.1 0.2

Number of jobs [10, 100] [10, 1000] [10, 5000] 2000 1000

Queue shuffled probability [0.1, 0.2] [0.1, 0.5] [0.1, 1] 0.5

Table 5: Parameters in LB simulation. Colored rows show the configurations (and their ranges) used in the simulator in the original paper. The

synthetic trace generator is described in §A.2.

job sizes follow a Pareto distribution with parameters [shape, scale].

In the simulation, all servers process jobs from their queues at iden-

tical rates.

A.3 Details of Figure 4

Trace sets in Figure 4 was generated by two configurations. For

trace set X, we used BW range: 0–5Mbps, BW changing frequency:

0–2s. For trace set Y, we used BW range: 0–10Mbps, BW changing

frequency: 4–15s. As a motivation example, each trace set contains

20 traces to show the testing reward trend.

A.4 Testbed setup

ABR: To test our model on a client-side system, we first leverage

the testbed from Pensieve [4], which modifies dash.js (version 2.4)

to support MPC, BBA, and RL-based ABR algorithms. We use the

“Envivio- Dash3” video which format follows the Pensieve settings.

In this emulation setup, the client video player is a Google Chrome

browser (version 85) and the video server (Apache version 2.4.7)

run on the same machine as the client. We use Mahimahi [38] to

emulate the network environments from our pre-recorded FCC [30],

cellular [43], Puffer [55] network traces, along with an 80 ms RTT,

between the client and server. All above experiments are performed

on UChicago servers.

CC: We build up CC testbed on Pantheon [56] platform on a Dell In-

spiron 5521machine. Pantheon uses network emulatorMahimahi [38]

and a network tunnel which records packet status inside the net-

work link.We run local customized network emulation inMahimahi

by providing a bandwidth trace and network configurations. We

run remote network experiment by deplopying pantheon platform

on the nodes shown in Figure 21. Among all the CC algorithms

tested, BBR [8] and TCP Cubic [20] are provided by Linux kernel

and are called via iperf3. PCC-Aurora [24] and PCC-Vivace [14] are

implemented on top of UDP. We train our models in python and

Tensorflow framework and port the models into the Aurora C++

code.

Real network testbed: We also test the Genet-trained ABR and

CC policies in real wide-area network paths (depicted in Figure 21),

including four nodes reserved from [2], one laptop at home, and

two cloud servers.

A.5 Details on reward definition

ABR: The reward function of ABR is a linear combination of

bitrate, rebuffering time, and bitrate change. The bitrate is observed

in kbps, and the rebuffering time is in seconds, and bitrate change

is the bitrate change between bitrate of current video chunk and

that of the previous video chunk. Therefore, a reward value can be
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Figure 21: Real-world network paths used to test ABR and CC policies.

computed for a video chunk. The total reward of a video is the sum

of the rewards of all video chunks.

CC: The reward function of CC is a linear combination of the

throughput (packets per second), average latency (s), and packet loss

(percentage) over a network connection. In training, a reward value

is computed using the above metrics observed within a monitor

interval. The total reward is the sum of the rewards of all monitor

intervals in a connection.

LB: The reward function of LB is the average runtime delay of

a job set, which is measured by milliseconds. For each server, we

observe its total work waiting time in the queue and the remaining

work currently being processed. After the incoming job is assigned,

the server would summarize and update the delay of all active jobs.

A.6 Baseline implementation

According to the paper [19], we train an additional RL model for

Robustify to improve the main RL-policy model by generating

adversarial network traces inside ABR. The state of the adversary

model contains the bitrate chosen by the protocol for the previous

chunk, the client buffer occupancy, the possible sizes of the next

chunk, the number of remaining chunks, and the throughput and

download time for the last downloaded video chunk. The action is

to generate the next bandwidth in the networking trace, in order to

optimize the gap between the ABR optimal policy, RL-policy, and

the unsmoothness, which is the absolute difference between the

last two chosen bandwidths. Here, the penalty of unsmoothness is

set as 1, same as the paper.

We use PPO as the training algorithm, and train the Robustify ad-

versary model with a RLmodel until they both converge. Afterward,

Figure 22: Training RL and CL with more iterations still cannot

outperform Genet.

we add the traces Robustify model generated into the RL training

process to retrain the RL. The PPO parameter settings follow the

original paper.

As an alternative implementation, we also use the reward defined

in Robustify as the training signal for BO to search and update

environments. For the unsmoothness penalty here, we empirically

tried three numbers: 0.1, 0.5, 1. From our results, penalty=0.5 works

better than others.

A.7 Reward value breakdown

Table 6 and Table 7 contain the system metrics behind the reward

values in Figure 16 for ABR and CC, respectively. The breakdown is

done by decomposing the reward equations introduced in Table 1.

For ABR, Table 6 shows that Genet tends to train a model that leads
to less rebuffering and more smoothed bitrate selection without

significantly sacrificing the average bitrate. For CC, Table 7 shows

that Genet-trained model tends to have a lower 90th percentile

latency and packet loss rate while not reducing throughput too

much on Path 2 and 3. On Path 1, the performance gain is mainly

from the larger throughput that Genet-trained model enables.

A.8 Train RLs and CLs with more iterations

To understand whether baselines like RLs and CLs can outperform

Genet if they are given more training iterations, we trained RLs

and CLs with twice as many training iterations as Genet. We

empirically found that training with more iterations did not help

the models trained by RLs and CLs as much as those trained by

Genet. Their learning curves are shown in Figure 22.
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ABR Bitrate (Mbps) Rebuffering (s) Bitrate change (Mbps) Reward

MPC 3.98 0.03 0.02 3.66

Path 1 BBA 3.84 0.018 0.15 3.51

Genet 3.87 0.006 0.04 3.77

MPC 3.22 0.041 0.07 2.74

Path 2 BBA 2.81 0.014 0.12 2.55

Genet 3.15 0.008 0.07 3.01

MPC 2.24 0.042 0.04 1.78

Path 3 BBA 1.75 0.03 0.05 1.40

Genet 2.26 0.033 0.02 1.91

MPC 2.93 0.013 0.04 2.76

Path 4 BBA 2.96 0.05 0.03 2.43

Genet 2.88 0.002 0.02 2.84

MPC 2.35 0.027 0.05 2.03

Path 5 BBA 1.82 0.022 0.04 1.56

Genet 2.32 0.004 0.03 2.25

Table 6: Reward breakdown of Figure 16(a) in ABR real-world experiment.

Path CC Throughput (Mbps) 90th percentile latency (ms) Packet loss rate Reward

BBR 164.2 57.25 0.0906 -35.62

Path 1 Cubic 158.2 56.60 0.0072 104.2

Genet 180.5 55.54 0.0063 152.1

BBR 0.2108 3346 0.0407 -1721

Path 2 Cubic 0.2149 6978 0.2206 -4273

Genet 0.1975 6381 0.0267 -3178

BBR 5.40 1581 0.0136 -705.9

Path 3 Cubic 6.63 1400 0.0382 -719.1

Genet 4.91 1180 0.0075 -439.9

Table 7: Reward breakdown of Figure 16(b) in CC real-world experiments.
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