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ABSTRACT
Remote dependency resolution (RDR) is a proxy-driven scheme
for reducing mobile page load times; a proxy loads a requested
page using a local browser, fetching the page’s resources over fast
proxy-origin links instead of a client’s slow last-mile links. In this
paper, we describe two fundamental challenges to efficient RDR
proxying: the increasing popularity of encrypted HTTPS content,
and the fact that, due to time-dependent network conditions and
page properties, RDR proxying can actually increase load times. We
solve these problems by introducing a new, secure proxying scheme
for HTTPS traffic, and by implementing WatchTower, a selective
proxying system that uses dynamic models of network conditions
and page structures to only enable RDR when it is predicted to
help. WatchTower loads pages 21.2%–41.3% faster than state-of-the-
art proxies and server push systems, while preserving end-to-end
HTTPS security.
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1 INTRODUCTION
Loading web pages has become increasingly complex. In a mod-
ern page, the top-level HTML embeds references to dozens of ob-
jects [15], each of which must be fetched and evaluated. The evalu-
ation of an object may cause additional objects to be fetched and
evaluated, e.g., when a CSS file refers to an image, or a JavaScript
file issues an AJAX request. Thus, to completely load a page, a
browser must recursively resolve a complex dependency graph that
specifies the objects to fetch, and the order in which they can be
evaluated [44]. Figure 1 presents an example page and its depen-
dency graph.
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To provide the fast page loads that users demand [11, 12, 24], a
browser must quickly resolve dependency graphs. However, depen-
dencies between different objects serialize the resolution process
and increase load times [44, 58], especially on mobile networks
where round trip times tend to be high. Given the rapid increase in
mobile web traffic [20, 63], considerable effort has been expended
to accelerate the dependency resolution process and reduce mobile
page load times.

One line of solutions enables servers to proactively push objects
to clients in anticipation of future requests, e.g., using the HTTP/2
protocol [9]. With server push, clients can avoid incurring network
round trips in the critical path of their page loads. Though promis-
ing, developing push policies is challenging, leading to mixed per-
formance improvements and low adoption rates [21, 57, 70, 74]. The
reason is that identifying the precise resources that comprise a page
often requires parsing and executing the page’s objects—something
that existing simple push policies do not do. Furthermore, the re-
sources on a page can change even across back-to-back loads [58],
requiring additional parsing and execution.

A more promising approach to generate server push policies,
embodied in both academic prototypes [10, 48, 62, 71] and com-
mercial systems [5, 36, 52], is to use remote dependency resolution
(RDR) proxies. An RDR proxy resides on a cloud server with low-
latency network paths to origin servers. To load a page, a client
browser does not send individual HTTP requests to the RDR proxy;
instead, the client browser only sends the request for a page’s top-
level HTML. The proxy loads the requested page locally with a
headless browser (i.e., one without a GUI [32]), streaming the dis-
covered objects to the client immediately. In this way, RDR proxies
resolve an entire dependency graph using low-latency proxy links.
RDR proxies can perform additional proxy-based optimizations like
caching [73] and compression [2, 53, 60], which provide orthogonal
benefits (e.g., compression is useful for mobile clients with limited
data plans), but have limited impact on load times.1 In addition,
RDR proxies overcome the limitations that server push policies
have with respect to identifying the resources that clients need to
load a page [61].

Unfortunately, two challenges limit the extent to which RDR
proxies can reduce load times. The first challenge is that RDR
proxies must either ignore HTTPS traffic, or compromise
the end-to-end security of HTTPS. An increasing fraction of
web traffic uses HTTPS instead of HTTP [29, 41]. A core goal
of HTTPS is end-to-end security: only web servers and browsers

1Caching and compression proxies (like content delivery networks [4, 23, 50, 68])
operate on individual objects, so clients still must traverse the high-latency last-mile
links to proxies for each resource in a page, limiting load time benefits [2].
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<html>
<img src= ``http://x.com/img.jpg ''/>
<iframe src= ``https: //y.com/index.html ''>

<!--Inside the frame . . .-->
<script src= ``https: //y.com/code.js ''/>

</iframe>
</html>

(a) The page contains two HTTP objects and two HTTPS objects.

!foo.com/!
index.html!
!

x.com/!
img.jpg!
!

!!!y.com/!
index.html!
!!

y.com/!
code.js!
!

(b) The dependency graph. Blue circles indicate HTTP content, and
dashed red circles indicate HTTPS content.

Figure 1: The web page http://foo.com/index.html, and its dependency graph.

should be able to decrypt network data, with intermediate hops
learning nothing about the forwarded ciphertext [56]. These se-
mantics present a dilemma for third-party proxies (e.g., belonging
to a mobile carrier). A proxy can ignore HTTPS traffic and force
browsers to directly resolve HTTPS dependency graphs, but this de-
nies load acceleration to a growing fraction of pages. Alternatively,
a proxy can act as a man-in-the-middle for HTTPS traffic [17, 34, 55]
to make the associated pages load faster. However, such full depen-
dency resolution violates HTTPS’ end-to-end security guarantees.

The second challenge is that remote dependency resolution
can actually increase page load times. Traditionally, web prox-
ies are “always-on,” i.e., a browser always uses the proxy for each
page load. However, the ability of a proxy to improve load times
depends on subtle interactions between a page’s dependency graph
and the latencies between the browser, the proxy, and a page’s web
servers. Network conditions change over time; clients, proxies, and
web servers may change locations; and no two pages have the same
dependency graph. Thus, at any given moment, for any given page,
a browser may increase load times by using remote dependency
resolution.

This paper investigates two important questions raised by these
observations. First, is the tension between security and performance
resolvable in practice? Second, can a client automatically determine
when to invoke remote dependency resolution? Through exper-
iments with many real pages (Alexa top 500 landing pages [3],
and smaller sets of interior and personalized pages), live mobile
networks (cellular, residential WiFi, and in-flight WiFi), and mul-
tiple client devices (phones, laptops, desktops), we answer these
questions affirmatively, and make three primary contributions.

Balancing security and performance with HTTPS sharding:
First, we quantify the performance penalties that RDR proxies incur
by ignoring HTTPS traffic (§4). We find that HTTP-only proxying
achieves less than 60% of the benefits enjoyed by a “full” proxy that
resolves both HTTP objects and HTTPS objects. To overcome this,
we introduce a new proxy technique called HTTPS sharding, which
allows the HTTPS subgraphs in a page to be resolved remotely, in
a way that protects end-to-end security guarantees (§4). HTTPS
sharding gives each HTTPS origin the ability to proxy its own parts
of a dependency graph. Our key observation is that dependency
graphs often contain connected subgraphs, where each subgraph’s
HTTPS vertices all belong to the same origin. This, in turn, limits
the number of round trips that clients must incur to each origin’s
proxy. As a result, HTTPS sharding provides over 90% of the benefits

of full dependency resolution, without exposing sensitive HTTPS
objects from origin X to proxies belonging to a different origin Y .
Model-based selective proxying: Second, we quantify the per-
formance penalties incurred by RDR proxies that use an always-on
model (§5). For example, we find that, on a residential WiFi net-
work, HTTP-only RDR hurts 37.8% of page loads. To decrease the
likelihood that RDR proxies do harm, we introduce a model-based
selective proxying algorithm (§6.1). Clients can use this algorithm to
predict load times for a page when using a proxy, or when loading
the page directly. Our predictive models take as inputs a page’s
dependency graph, the dependency resolution scheme, and the
estimated network latencies that would be incurred by travers-
ing the graph with or without a proxy. Surprisingly, our models
make highly accurate predictions of whether or not to use a proxy
(error rates of 0.61%–1.23%), without considering several details
of the page load process that are hard to model, such as browser
computation delays and TCP congestion control.
WatchTower: a new RDR proxy system that is fast and se-
cure: Finally, we implement and evaluateWatchTower, a new proxy
system that uses both HTTPS sharding and selective proxying to
outperform a traditional always-on proxy, various server push poli-
cies, and Vroom [58], a state-of-the-art mobile web accelerator (§6).
For example, on a cellular network, WatchTower outperforms an
always-on proxy and Vroom by over 29% and 34%, respectively,
resulting in page load time reductions of 1.22–1.85 seconds, and
median energy savings of 22%. WatchTower’s benefits extend to
other performance metrics like Speed Index, with speedups of 26%
on a cellular network.

We evaluate WatchTower in various additional scenarios, in-
cluding with partial adoption, warm client-side caches, and stale
model inputs (§6.3). We also discuss operational overheads (§6.3)
and potential deployment avenues (§4) forWatchTower and HTTPS
sharding.

2 BACKGROUND AND RELATEDWORK
Remote dependency resolution: RDR is used by a variety of
web accelerators. For example, Amazon Silk [5], Opera Mini [52],
and CGN [10] perform full dependency resolution, using proxy
servers to resolve both HTTPS and HTTP edges in a dependency
graph. Figure 2a provides a high-level overview of full RDR. As
mentioned in §1, full RDR breaks the end-to-end security guaran-
tees of HTTPS. PARCEL [62] avoids this issue by using a proxy to
only resolve the dependency graph’s HTTP edges. However, such
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(a) Full dependency resolution. The user sends a page’s top-
level URL to the proxy. The proxy uses a headless browser
to resolve the dependency graph (which contains both HTTP
andHTTPS objects), and sends those objects back to the user’s
browser.
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(b) HTTP-only dependency resolution. As with full RDR, the
user sends a page’s top-level URL to the proxy. However, the
proxy can only evaluate the HTTP edges in the dependency
graph. The proxy returns the fetched HTTP objects to the
user. The user’s browsermust evaluate the remaining,HTTPS
part of the dependency graph.

Figure 2: Comparing full and HTTP-only RDR for the page in Figure 1. “[XXX]” prefaces network traffic sent using the XXX
protocol. Blue and red text indicate HTTP andHTTPS traffic, respectively. Note that, for both resolution techniques, the proxy
pipelines results back to the client, returning an object as soon as the proxy has fetched it.

HTTP-only dependency resolution forces browsers to fetch
HTTPS content directly from origin servers, over slow last-mile
links (Figure 2b). HTTPS traffic is rapidly overtaking HTTP traf-
fic [29, 41], resulting in declining benefits for HTTP-only RDR (§4).
Even today, Google Chrome reports that over 70% of page loads use
HTTPS, with 96 out of the top 100 pages in the world supporting
HTTPS [29].

Certain RDR systems like Shandian [71], Prophecy [45], and
Opera Mini [52], return post-processed versions of objects to clients.
Such content alteration can reduce client-side computation and
bandwidth costs, but is fragile and may break page functional-
ity [2]. WatchTower is orthogonal to such approaches; to the
extent that computationally-optimized pages still require multi-
ple round trips to load, WatchTower can hide the associated net-
work latencies. Moreover, our experimental results show that, even
though computational overheads can be significant on mobile de-
vices [43, 58, 70, 72], WatchTower still significantly reduces mobile
page load times. WatchTower is also compatible with RDR optimiza-
tions that employ whittling techniques to reduce the proxy-side
overheads of discovering resources to push [61].

Compression proxies: Both full and HTTP-only RDR require
proxies to run a headless browser—only by running this browser
and simulating a client-side page load can a proxy generate the
dependency graph to resolve. Compression proxies are much sim-
pler. A user’s browser generates the dependency graph locally, but
forwards individual fetch requests to the compression proxy. The
proxy downloads the associated objects and returns compressed
versions to the browser. Large technology companies often run
compression proxies to reduce the bandwidth consumption of their
customers. For example, Google Flywheel [2], Opera Turbo [53],
and Nokia Xpress [66] use proxies to transcode images into the
WebP format [27], gzip text-based content like HTML, and minify
JavaScript and CSS. Flywheel and Opera Turbo only proxy HTTP
requests, while Xpress proxies HTTPS traffic too, decrypting, com-
pressing, and then re-encrypting that traffic [39]. More recently,
Flexiweb [60] lets clients make network-aware decisions about
whether sending individual requests to a compression proxy will
result in load time benefits.

3 EXPERIMENTAL METHODOLOGY
Here, we describe the setup we used to evaluate traditional proxy
schemes (§4–§5) and our new system that leverages selective prox-
ying and HTTPS sharding (§6).

Performance baseline: This paper focuses on reducing mobile
page load times. Thus, we evaluated proxies that used remote de-
pendency resolution (not compression proxies which have limited
impact on load times [2]). The performance baselines were the
load times that resulted from using a compression-only proxy, or
no proxy at all. The baseline compression proxy did not perform
caching, since caching proxies are most useful for static objects
that are already well-served by CDNs [4, 23, 50, 68] located close
to proxies.

We extended Cumulus, a state-of-the-art proxy [48], to imple-
ment our baseline proxy and the various RDR proxies that we evalu-
ate in this paper. Cumulus has two components: a caching daemon
which runs on a user’s local machine, and a remote proxy which
runs on a cloud server. The client browser is unmodified—Cumulus
uses destination NAT filters [14] to redirect the browser’s network
traffic to the local caching daemon. The caching daemon maintains
a database that maps HTTP(S) requests to the corresponding re-
sponses. When the browser issues a request that misses in the cache,
the caching daemon forwards the request to the remote proxy. The
remote proxy uses a headless browser to fetch the associated con-
tent (and anything that can be reached by recursively evaluating
the fetched objects). To mimic the client-side page load and ensure
that the remote proxy downloads the same object versions from
the origin servers as the client would have, the headless browser
reuses the HTTP headers (e.g., User-Agent) included in the client’s
initial request. The remote proxy ships objects back to the caching
daemon as soon as they are fetched. We note that objects remain in
the caching daemon for at least the duration of the corresponding
page load. Objects marked as uncacheable by HTTP caching head-
ers [1, 22] are evicted by the caching daemon immediately after
the page load, and browsers employ default caching logic for all
objects received from the caching daemon. Our calibration experi-
ments [47] show that Cumulus’ performance is competitive with
that of other state-of-the-art proxies.
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Client network Link Rate First-hop
(Mbits/s) RTT (ms)

JetBlue In-flight WiFi [35] 7.2 966
Verizon 4G LTE Cellular 9.3 87

Residential WiFi 22.7 21
Wired Broadband 772 0.37

Table 1: The real networks that we used to evaluate RDR.
The client for the cellular and residentialWiFi networkswas
a Nexus 5 phone (Android 5.1.1); mobile versions of pages
were used if they existed. In-flight WiFi and wired network
tests used a 2015 Macbook Pro laptop (macOS 10.14, 4 pro-
cessors, 16 GB RAM) and Lenovo M91p desktop (GNU Linux
14.04, 8 processors, 8 GB RAM), respectively.

Web sites use cookies [7] to store small amounts of client-side
data associated with individual origins. When a Cumulus-enabled
browser issues an HTTP request for a resource from origin X , the
browser sends the HTTP Cookie headers for X to the proxy. This
policy, which is common in deployed proxies like Amazon Silk [5],
allows a proxy to fetch customized content from origin X . Due
to space constraints, we defer a full discussion of the trade-offs
between cookie disclosure policies and proxy performance to a
technical report [47].
Evaluation setup:Our test corpus primarily consisted of the Alexa
top 500 pages [3]; we also consider non-landing and personalized
pages in §6.3. Page loads withmobile devices usedmobile-optimized
versions of pages when available. We used Google Chrome v63 with
Cumulus as the proxy. We defined “load time” as the time between
the navigationStart and loadEventEnd JavaScript events; results
in §6.3 also consider the Speed Index metric [26]. Results used cold
browser caches unless otherwise specified.

Table 1 describes the last-mile links and client devices used in
our experiments. We primarily focus on the common case of proxy-
based web acceleration for mobile browsers [2, 52, 62], but also
present results with laptops and desktops to show that proxies
can improve load times for a variety of clients. Client devices were
always physically located inMassachusetts, except for in-flightWiFi
experiments. To vary network latencies between clients, proxies,
and origin servers, we ran proxies on EC2 machines in northern
California, Oregon, Virginia, and Brazil, as well as on a desktop in
Massachusetts.

4 THE COST OF IGNORING HTTPS
In this section, we empirically demonstrate whyHTTP-only proxies
are increasingly untenable. Since this section focuses on the cost
of ignoring HTTPS, not the cost of suboptimal proxy location (§5),
we loaded each page five times for each of the five proxies, and
recorded the lowest median load time across all proxies.
Full vs. HTTP-only Resolution: Figure 3 describes load times
when clients used full dependency resolution, HTTP-only depen-
dency resolution, compression-only proxying, or no proxying at
all (i.e., a default browser); note that all proxies compressed objects.
As expected, both forms of RDR outperformed the compression-
only proxy and the default browser. Even on the high-bandwidth,
low-latency broadband network, full and HTTP-only RDR de-
creased load times by 22.4% and 13.7%, respectively, compared to the

compression-only proxy. Our results also show that with respect to
load time, a compression-only proxy is essentially equivalent to no
proxy. Thus, in the rest of the paper, we do not show results for a
compression-only proxy; instead, our baseline is a default browser
with no proxy.

Themost interesting trend is the performance difference between
full and HTTP-only RDR. The Internet-wide shift from HTTP to
HTTPS is ongoing, but even today, HTTP-only RDR is losing efficacy
due to its inability to handle HTTPS traffic. As Figure 3 shows, full
dependency resolution provides 1.64×–1.99× the benefits of HTTP-
only resolution. On a cellular network, this performance advantage
equates to an additional 1.61 seconds of load time removed at the
median. The performance disparities between full and HTTP-only
RDR will only increase as more sites transition to HTTPS [29, 41].
Indeed, for a site that only uses HTTPS, HTTP-only resolution can
provide no benefit at all.

The advantages of full dependency resolution persist even with
warm browser caches. For example, we loaded each page in our
corpus twice, back to back, over a cellular network. For each page,
we measured the time for the second load (which used a warm
browser cache). Full dependency resolution decreased the median
load time by 30.1%; HTTP-only resolution decreased the median
load time by just 13.3%. Analyzing our test corpus revealed that only
38.7% of objects were cacheable; thus, page loads with warm caches
still required most objects to be fetched. Given the superiority of
full dependency resolution for both warm and cold caches, ignoring
HTTPS traffic seems unjustifiable.

HTTPS-sharding Resolution: To allow the secure proxying of
HTTPS content, we propose HTTPS-sharding resolution. In this
scheme, each HTTPS origin runs its own RDR proxy, thereby pre-
serving the end-to-end security guarantees of HTTPS. The proxy
for foo.com only resolves HTTPS dependencies for foo.com ob-
jects. However, the proxy can resolve HTTP dependencies from any
origin, since those dependencies do not involve secure data. Mobile
providers can still run origin-agnostic, HTTP-only proxies. Figure 4
shows how this would work for the page in Figure 1a. Compared to
full RDR (Figure 2a), the end-to-end page load incurs an extra RTT
over the last mile. However, each round trip to an origin’s HTTPS
proxy lets the client resolve an entire HTTPS subgraph belonging
to that origin.

Intuitively, HTTPS sharding leverages the fact that objects
from a particular origin are often clustered into separate sub-
graphs in a page’s dependency graph. This limits the number of
times a client must contact each origin’s proxy. For example, a
parent iframe from https://foo.com may embed a child frame
from https://bar.com. In this case, foo.com’s proxy would load
foo.com objects in the parent frame, but would refuse to load the
bar.com frame. The user’s browser would then be responsible for
contacting the bar.com proxy, which would resolve all of the edges
in the bar.com subgraph. In this manner, bar.com never sees clear-
text HTTPS data from foo.com, and vice versa.

Figure 5 compares the performance of full, HTTPS-sharding, and
HTTP-only RDR. In the HTTPS-sharding case, the client assigned
an HTTPS proxy to originO by selecting the proxy with the lowest
latency to O’s origin servers. With HTTP-only resolution, proxies
achieve only 50.3%–59.2% of the gains provided by full resolution.
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(a) In-flight WiFi network. (b) Verizon 4G LTE network.
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Figure 3: Distribution of page load times using full dependency resolution, HTTP-only resolution, compression-only proxying,
and no proxying (i.e., a default browser).
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Figure 4: With HTTPS-sharding resolution, the user’s
browser contacts two different proxies to load the example
page. TheHTTPSorigin’s data is never exposed to theHTTP-
only proxy. Blue and red text indicate HTTP and HTTPS
traffic, respectively, and proxies use pipelining to immedi-
ately return objects to the browser.

With HTTPS-sharding, proxies achieve 91.3%–95.6% of the benefits,
while preserving the end-to-end security of HTTPS.
Deployment and Adoption: There are several potential deploy-
ment paths for configuring and running an HTTPS-sharding proxy.
For example, an origin can use Apache’s reverse proxy support [6]
to run an HTTPS-sharding proxy on the same machine that hosts
the origin’s real web server. Alternatively, a company with geo-
graphically distributed web servers may choose to strategically
deploy proxies at a smaller number of vantage points. Middlebox
approaches for improving performance [2, 5, 73], security [13, 18],
and load balancing [31, 49] are already common, so deploying prox-
ies is already within the capability of many companies.

Individual origins must explicitly opt into HTTPS sharding by
running proxies. The performance benefits of HTTPS sharding
obviously increase as more origins run proxies, but within a single
page, only some HTTPS origins may run proxies. We evaluate the
performance of HTTPS sharding with partial deployments in §6.3.

5 THE COST OF ALWAYS-ON PROXIES
Section 4 showed that remote dependency resolution can substan-
tially decrease page load times. However, this general result hides
the fact that, in some cases, RDR proxies increase load times. Here,
we evaluate the extent to which four factors affect the benefits
of RDR: the complexity of a page’s dependency graph (§5.1), last-
mile latency (§5.1), last-mile bandwidth (§5.3), and proxy location
(§5.2). These empirical results motivate the design of our selective
proxying system that avoids the pitfalls of an always-on approach
(§6).

In this section, we measure the speedup that proxying confers,
relative to a browser that uses no proxy. “Speedup” is defined as

the ratio of page load time for a browser using no proxy, compared
to the load time (under identical network conditions) for a browser
using Cumulus. Speedups greater than 1 occur when RDR decreases
load times. All page loads used a browser in Massachusetts with a
cold cache. Due to space limitations, we sometimes only present
graphs for full dependency resolution, but all reported trends are
exhibited by the other resolution techniques.

5.1 Last-mile Latency & Page Complexity
As discussed in Section 2, remote dependency resolution provides
the most benefits when the client’s last-mile link has high latency.
Figure 6, which plots speedups with full dependency resolution,
reaffirms this point. However, for a given network, different sites
experience vastly different speedups. In fact, some sites experience
a slowdown by using a proxy, even with high last-mile latencies.
For example, speedups were less than 1 for 3.1% and 14.3% of pages
loaded over the cellular and residential WiFi networks, respectively.

To understand why different sites see different speedups for the
same network conditions, consider https://www.google.com and
http://www.tmz.com/. Figure 7 shows the dependency graphs for
these pages. Define the critical path as the longest chain of non-
parallelizable network fetches. The length of the critical path is
a good approximation of the effort needed to load a page when
latency is the limiting network factor [44, 69]. The Google page has
a critical path of length four, while TMZ’s has length ten. Thus, for
a regular, proxy-less browser, increased last-mile latency will hurt
TMZ page loads more than Google page loads.

To demonstrate this phenomenon, we used a synthetic network
setup to isolate the impact of last-mile latency. Our experiment
leveraged Mahimahi [48], a tool for recording and replaying HTTP
traffic over emulated networks. Our simple network contained
three links: one connecting the client to the proxy, another con-
necting the proxy to origin servers, and one connecting clients to
origins. All link rates were 12 Mbits/s, but we conducted a parame-
ter sweep of RTTclient−or iдin (i.e., the RTT between the client
and origins), examining values from 0 ms to 300 ms. For each
tested value, we loaded each page twice: once with no proxy, and
once with a proxy that did full dependency resolution, and had
RTTclient−proxy = RTTclient−or iдin and RTTproxy−or iдin = 0.
By setting RTTproxy−or iдin to 0, we modeled an ideal proxy that
could fetch objects with no delay. Thus, the benefits of remote de-
pendency resolution could only be influenced by last-mile latency
and the structure of a page’s dependency graph.
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(a) In-flight WiFi network. (b) Verizon 4G LTE network.
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Figure 5: Page load times using full dependency resolution, HTTPS-sharding resolution, and two variants of HTTP-only res-
olution (one in which a client uses a single proxy to download all HTTP content, and one in which a client downloads HTTP
content from originO using the closest proxy toO ’s servers). The per-origin HTTP-only scheme performs slightly worse than
the standard HTTP-only scheme, incurring an extra RTT when HTTP content from origin X embeds HTTP content from
origin Y ; such cross-HTTP-origin transitions are common. Thus, we do not discuss per-origin HTTP-only proxying in the rest
of the paper.
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Figure 6: Speedups for full dependency resolution. Each
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Figure 7: Dependency graphs for the Google and TMZ
(cropped) homepages. Critical paths are marked in red.
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Figure 8: Speedups increase as last-mile latency grows or
critical path length increases. These results used full RDR,
but the trends are similar for HTTP-only and HTTPS-
sharding. The client was a Nexus 5 phone.

As Figure 8 shows, RDR provided more benefit to the TMZ page,
which had a longer critical path. However, for both pages, the proxy

(a) Verizon 4G LTE. (b) Residential WiFi network.
Figure 9: Impact of proxy location for a client in Mas-
sachusetts. The proxy used full RDR. Results were similar
for in-flight WiFi and wired broadband.

increased load times when last-mile latency was low; for TMZ, the
break-even point was 20 ms, but for Google, the break-even point
was 65 ms. This is explained by two observations:
• As critical path length grows, proxying becomes advantageous
even for small round-trip latencies, since, without proxying,
chains of small latencies on the critical path sum to a large,
non-parallelizable latency.

• With proxying, a page’s HTML, CSS, JavaScript, and images must
be parsed and evaluated twice (once on the headless browser,
and once on the client browser). As the computational cost for
evaluating a page increases, the double computation penalty of
proxying grows. Thus, round-trip latencies must be sufficiently
large to overcome the double computation penalty.

These results (from a mobile phone) show that, despite the fact that
computational overheads can be significant on mobile devices [43,
58], critical path length (and the associated serial chain of last-mile
latencies) is usually the primary determinant of whether a proxy
will decrease mobile load times. Since the TMZ page’s critical path
was longer than Google’s, the TMZ page started to benefit from
proxying at lower last-mile latency values.

5.2 Proxy Location
A compression-only proxy has two goals: reduce the bandwidth
needed to fetch an object, while adding minimal latency. To reduce
the added latency, compression proxies use geographic affinity
between clients and proxies—a client preferentially attaches to a
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nearby proxy, minimizing the network detours from the natural
fetch path [2, 60]. Client-driven geographic affinity is a good idea
for compression-only proxies, but a bad idea for dependency reso-
lution proxies. The latter type of proxy only helps if the proxy has
low-latency paths to origin servers, i.e., if resolving edges in the
dependency graph is faster using the proxy’s links instead of the
client’s last-mile link. Thus, dependency resolution proxies should
use origin-driven geographic affinity—a client which needs to load
a page from origin X should select a proxy which is close to X ’s
web servers.

To evaluate the importance of proxy location, we fixed the client
location to Massachusetts, and loaded our 500 test pages using the
four networks from Table 1. For each page and each network, we
measured six median load times: a baseline load which used no
proxy, and five instances of full dependency resolution using the
proxies described in §3. Each median was computed over five page
loads that used the same proxy. As shown in Figure 9, proxy location
has a significant impact on the performance of remote dependency
resolution. For example, on the cellular network, median speedups
ranged from 0.68×–1.60× across the five proxy locations. In all of
the networks, the biggest speedups resulted from using the proxies
in California and Massachusetts. With GeoIP [37], we found that
web servers in California and Massachusetts hosted 84.2% of all
objects in our test pages (roughly 42% each).2 This result shows the
importance of origin-driven proxy placement, and confirms results
from prior smaller-scale tests [10].

5.3 Last-mile Bandwidth
Prior work has shown that load times are only sensitive to network
bandwidth when bandwidth is very low [2, 8, 38, 64]. We validated
that RDR is also largely insensitive to link rates. This result is
unsurprising, so we defer a full discussion to a technical report [47].

5.4 Summary
The results in this section challenge conventional wisdom, demon-
strating that always-on proxies can increase page load times.
Broadly speaking, remote dependency resolution is more likely
to hurt load times when last-mile latencies are low, critical path
lengths are small, or proxies are far from origin servers. However,
for a particular client at a particular time, the usefulness of RDR is
a function of the current network conditions, the page to load, and
the available proxies.

6 WATCHTOWER
WatchTower is a new RDR system that performs selective proxying.
When a user tries to load a page, WatchTower consults analytical
models to predict whether RDR proxying would actually increase
the load time; if so, WatchTower loads the page by fetching ob-
jects directly from origin servers. By making such predictions for
each page load, WatchTower improves load times by 21.2%–41.3%
compared to always-on proxies and state-of-the-art server push
systems. Interestingly, WatchTower unlocks these benefits using
simple analytical models that consider network latencies and depen-
dency graph structures, but ignore TCP windows, computational
costs, and other dynamics which might seem essential to capture.
292% of objects served in Massachusetts were from CDNs.

6.1 Estimating Page Load Times
A page’s static critical path is the longest root-to-leaf path in the
dependency graph, where “length” is defined as “the number of
edges.” If each edge requires the same amount of time to resolve, the
static critical path provides a lower bound on the time required to
load the entire page [69]. However, due to the network conditions at
the time of a page load, the path with the most edges may not be the
slowest one to resolve [44]. For example, a path that traverses many
low-latency network links may be faster to resolve than a path
that traverses a few high-latency links. Thus, our analytical models
estimate the resolution time for a page’s dynamic critical path, i.e.,
the path that, given current network conditions, will lower-bound
a page’s load time.

At a high level, we find the dynamic critical path by considering
each path in the dependency graph, and estimating the resolution
time for that path as if the graph consisted of just that path. The
type of dependency resolution that a client employs (full, HTTP-
only, HTTPS-sharding, or none) determines the resolution cost of
each path. We then estimate the page’s load time as the longest
resolution time for an individual path.

Define a context transition as a dependency edge from HTTP
content to HTTPS content, or from HTTPS to HTTP content, or
from HTTPS content in origin X to HTTPS content in origin Y . For
example, Figure 1 depicts a single context transition. If proxies do
not use full dependency resolution, then context transitions may
inject additional network latencies into the resolution process. Our
models ignore computational costs and link bandwidths since those
factors are less important than link latency and page complexity
(§5.1 & §5.3). Below, we describe how we estimate path resolution
costs for each resolution approach.
No remote dependency resolution: All edges in a path are re-
solved using the client’s network links to origin servers. As a result,
the path’s load time is L ∗RTTclient−or iдin , where L represents the
path length.
Full dependency resolution: We estimate load time as
RTTclient−proxy + (L∗RTTproxy−or iдin ). This represents the costs
for the proxy to resolve the path, and the client to fetch the associ-
ated objects from the proxy.
HTTP-only resolution: In this scheme, an HTTP-to-HTTPS tran-
sition forces the proxy to halt resolution; the proxy returns the
HTTP objects that it has fetched to the client, and the client starts to
resolve HTTPS edges in the path. If the client encounters an HTTPS-
to-HTTP transition, the client forwards the transition-triggering
fetch to the proxy. The proxy resolves HTTP edges until hitting an
HTTP-to-HTTPS transition.

Let H be the number of HTTP edges in the path to resolve.
The ith HTTP-to-HTTPS transition completes a round-trip of
RTTclient−proxy , since a proxy must terminate resolution and push
the fetched HTTP objects back to the client. Before the transition,
the proxy also incurred fetch latencies of Hi ∗ RTTproxy−or iдin ,
whereHi ≤ H is the number of HTTP edges that the proxy resolved
before the current transition (but after any previous transition).
Thus, resolving the HTTP edges between two transitions incurs a
latency of RTTclient−proxy + (Hi ∗ RTTproxy−or iдin ).

Let T be the number of HTTP-to-HTTPS transitions, and let S
be the number of HTTPS edges in the path. Resolving all of the
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Figure 10: Estimating the load time for a simple page.
Blue circles represent HTTP objects, and dashed red cir-
cles represent HTTPS objects. Beneath each path, we list
the estimated load time with HTTP-only resolution. The
page’s load time is estimated as the slowest resolution time
amongst all paths.

HTTPS edges incurs a total latency of S ∗RTTclient−or iдin . So, the
total latency for HTTP-only resolution is the cost to resolve all of
the HTTP and HTTPS edges. This cost is S ∗ RTTclient−or iдin +∑
i (RTTclient−proxy + (Hi ∗ RTTproxy−or iдin )), which equals S ∗

RTTclient−or iдin +T ∗ RTTclient−proxy + H ∗ RTTproxy−or iдin .
HTTPS-sharding resolution: With HTTPS-sharding resolution,
all objects are fetched by proxies. The proxy for origin X can fetch
HTTPS objects from X , as well as HTTP objects from any origin.
Let HTTPX or HTTPSX represent an HTTP or HTTPS object from
origin X , and let ∗ represent any origin. There are four possible
context transitions:
• In an HTTPX -to-HTTPSX transition, the proxy for X can fetch
the needed HTTPS object.

• In an HTTPX -to-HTTPSY transition, the proxy for X cannot
fetch the HTTPS object from Y . So, the proxy must terminate
dependency resolution and return any fetched objects to the
client, who is then responsible for contacting the proxy for Y .
Let THTT PX−to−HTT PSY represent the number of such context
transitions.

• An HTTPSX -to-HTTPSY transition similarly requires the proxy
for X to terminate resolution. Define THTT PSX−to−HTT PSY as
the number of these transitions.

• An HTTPSX -to-HTTP∗ transition does not force X ’s proxy to
terminate resolution, since X ’s proxy can fetch HTTP objects
from any origin.

Since all objects are fetched by proxies, the minimum latency for
resolving the path is RTTclient−proxy + (L∗RTTproxy−or iдin ); this
represents the case in which there are no HTTPX -to-HTTPSY
or HTTPSX -to-HTTPSY transitions. The general formula which
accounts for those transitions is (1 + THTT PX−to−HTT PSY +

THTT PSX−to−HTT PSY )∗RTTclient−proxy + (L∗RTTproxy−or iдin ).
In other words, each transition incurs a cost of RTTclient−proxy
when a proxy must terminate resolution.
Selective proxying: A client should only use a proxy if the proxy-
mediated page load would be faster than an unassisted one. Using

Client network HTTP-only HTTPS-sharding
4G LTE Cellular 1.22 (5.54) 1.85 (7.45)
Residential WiFi 0.57 (1.75) 0.81 (3.46)
Wired Broadband 0.20 (0.93) 0.39 (1.42)

Table 2: Median (95th percentile) seconds of load time shed
by WatchTower compared to always-on proxying.

the formulas above, we can predict the two load times (Figure 10),
and enable proxying only if it would provide benefits.

A client may be able to choose from multiple proxies, and a
page may contain objects from many origins. In these scenarios,
WatchTower’s formulas use the appropriate RTTclient−proxy and
RTTproxy−or iдin values. Also note that, if a client or proxy already
has a cached version of an object, we set the resolution time for the
object’s dependency edge to zero.

6.2 Design of WatchTower
WatchTower consists of two parts: a browser plugin which allows
users to select a dependency resolutionmode,3 and a set of Cumulus
proxies that are scattered throughout the Internet. A proxy may
be origin-agnostic (as most proxies are today) and deployed by a
mobile carrier or an ISP to improve load times for all customers
and all pages. Alternatively, a proxy may be run by a specific origin
for the purpose of supporting HTTPS-sharding resolution; such a
proxy lets the origin protect the end-to-end security of its HTTPS
traffic.

In WatchTower, the Cumulus proxies periodically measure their
latencies to the 500 most popular origin servers from the Alexa
list [3]. The proxies also capture dependency graphs for the 500
most popular sites. The WatchTower browser plugin periodically
contacts each proxy, downloading the latencies and dependency
graphs collected by the proxy. The plugin also measures client
latencies to the Cumulus proxies, and to the 500 most popular ori-
gins. With estimates for RTTclient−proxy , RTTclient−or iдin , and
RTTproxy−or iдin , the plugin uses the formulas from §6.1 to deter-
mine, for each page load, whether the browser should fetch all
objects directly, or employ the user-selected proxying technique. In
the latter case, WatchTower uses its models to select the best proxy
to use.

Of course, a user may visit sites that are not among the 500 most
popular pages. When a user’s WatchTower plugin sees the first
request for such a page, the plugin defaults to using the closest
proxy to load the page. Although client-driven geographic affinity
limits the gains of RDR proxies (§5.2), selecting a nearby proxy for
the first load of a page minimizes network indirection, and thus
bounds the potential harm imposed by the proxy. Upon receiving
the request, the proxy loads the page, streaming objects to the client
and discovering the origins referenced by the page’s content. The
proxy adds the discovered origins to the set of origins that the
proxy probes for latency. Meanwhile, as the client loads the page,
the WatchTower plugin extracts the dependency graph for the page
by observing initiation contexts for object fetches [44]. Later, when
the client periodically polls the other proxies, the client informs
the proxies about the long-tail origins belonging to the unpopular

3WatchTower’s plugin logic for the mobile browser is implemented in the Cumulus
caching daemon (§3) since Chrome for Android does not support extensions.
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(a) 4G LTE cellular network.
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Figure 11: Speedups for WatchTower and always-on proxying; the performance baseline was a browser that never used prox-
ying. Note that speedups less than 1 represent an increase in page load times.

sites that the user visits. Thus, proxies will measure latencies to
all popular origins, and to the unpopular origins that the proxies’
clients actually care about. The client-side plugin is responsible
for capturing dependency graphs for long-tail pages, as well as
measuring the associated client-origin latencies.

Web browsing patterns of individual users are stable over
time [51]. The dependency graph for an individual page also
changes slowly—the overall graph shape is stable overmultiple days,
and the origin associated with each vertex’s URL rarely changes,
even though the full URL often does [16]. So, capturing a page’s
dependency graph once every few days is sufficient.

WatchTower’s design is agnostic to the latency measurement
scheme used by proxies and clients. Our prototype uses weighted
averages of simple pings to measure RTTs, but could leverage prior
work which describes how to efficiently perform latency estimates
that scale to millions of hosts [19, 30, 54, 65].

6.3 Evaluation
To evaluate WatchTower, we first compared its performance to
that of an always-on proxying system. We placed Cumulus prox-
ies on the EC2 nodes described in §3. With WatchTower, each
page load used the proxy that was predicted to give the best load
time; if all proxies were predicted to hurt load times relative to a
no-proxy scenario, WatchTower disabled proxying. In the always-
on proxying system, all page loads used the proxy that was ge-
ographically closest to the client.4 Since the client location was
fixed to Massachusetts, the always-on system consistently used the
proxy in Massachusetts. To simplify the experimental setup, Watch-
Tower collected dependency graphs and RTT values immediately
prior to each experiment. At the end of this section, we examine
WatchTower’s sensitivity to fluctuating RTTs and stale dependency
graphs. Unless otherwise stated, experiments used cold browser
caches.

Figure 11 compares the speedups achieved by WatchTower and
always-on proxying, relative to a browser that never used proxying.
The experiment considered HTTPS-sharding and HTTP-only reso-
lution which, unlike full RDR, respect end-to-end HTTPS security.
Results used the Alexa top 500 sites. As shown, WatchTower signifi-
cantly reduces the probability that, when proxies are used, they hurt
load times. In the residential WiFi network, this probability drops
from 23.3%–37.8% with the always-on model, to 0.64%–0.97% with

4This represents the proxy selection heuristic for existing proxies like Flywheel [2]
and Opera Mini [52].

Figure 12: Speedups for WatchTower and always-on proxy-
ing with a cellular network. In contrast to Figure 11(a), per-
formance is defined using Speed Index [26] instead of the
traditional page load time definition.

Figure 13: Speedups for WatchTower and always-on proxy-
ingwithwarmbrowser caches on a cellular network.We saw
similar trends for the other networks.

WatchTower. The reduction is even larger in the wired broadband
network, dropping from 49.1%–62.6% to 0.61%–1.23%. The reason
is that, when RTTclient−or iдin values approach RTTclient−proxy ,
WatchTower has more opportunities to disable proxying and avoid
inefficient network detours for object fetches.

Using selective proxying, WatchTower outperforms the always-
on model for all of the networks and both HTTP-only and HTTPS-
sharding resolution. For example, on a cellular network, median
speedups for always-on proxying were 1.14× and 1.45× for HTTP-
only and HTTPS-sharding resolution, respectively. With Watch-
Tower, speedups were 1.51× and 1.87×. In terms of raw savings,
this equated to removing 1.22 seconds–1.85 seconds of load time
relative to the always-on model. Table 2 quantifies these raw sav-
ings, which are quite impressive, since web developers are elated
to shave tens of milliseconds from load times [11, 12, 24].



MobiSys ’19, June 17–21, 2019, Seoul, Republic of Korea R. Netravali, A. Sivaraman, J. Mickens, H. Balakrishnan

WatchTower WatchTower Always-On Always-On
Client network HTTP-only HTTPS-sharding HTTP-only HTTPS-sharding
4G LTE Cellular 1.39× 1.54× 1.10× 1.26×
Residential WiFi 1.18× 1.41× 1.06× 1.15×
Wired Broadband 1.07× 1.19× 1.02× 1.08×

Table 3: Median speedups in Speed Index forWatchTower and always-on proxying; the performance baseline is a browser that
never used proxying.
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Figure 14: Speedups for WatchTower using fresh and 24-
hours-stale latency measurements on a WiFi network. We
saw similar trends on the other networks.

Speed Index: The traditional definition for “page load time” states
that a page is not loaded until a browser has fetched all of the
external resources (e.g., images and JavaScript files) that are refer-
enced by the page’s top-level HTML. In contrast, a page’s Speed
Index [26] represents the time that a browser needs to completely
render the pixels in the initial view of the page. By focusing on the
visual progression of “above-the-fold” content, Speed Index tries to
capture the subjective preference of a human who favors a quickly-
rendering page, even if some of the JavaScript or below-the-fold
content is not immediately ready. Speed Index cannot represent the
fact that a fully-rendered page is not truly ready until JavaScript
event handlers have been registered, and JavaScript timers have
started to implement animations. Thus, Speed Index is not strictly
better than the traditional PLT metric [46]. Nevertheless, Speed
Index provides a useful second perspective for understanding page
loads.

Table 3 shows that, across all three test networks, WatchTower
provides significant reductions in Speed Index compared to an
Always-On proxying system. Figure 12 illustrates those savings for
the cellular network scenario, where median speedups for always-
on proxying were 1.10× and 1.26× for HTTP-only and HTTPS-
sharding resolution, respectively.WithWatchTower, speedupswere
1.39× and 1.54×. In terms of raw savings, this equated to removing
428–562 milliseconds of load time relative to the always-on model.

These savings, while practically useful, are less than the savings
that WatchTower provides for the traditional definition of page load
time. This discrepancy is expected, since WatchTower’s algorithms
(§6.1) specifically target the traditional load time metric, not Speed
Index. Modifying WatchTower’s algorithms to target Speed Index
is an important area for future research.
Preloading and Server Push: HTTP/2 [9] allows a web server to
proactively send objects to clients. At first glance, server pushmight
seem to unlock many of WatchTower’s benefits, since a server can
stream objects to a client without waiting for explicit requests.
Using Mahimahi [48], we experimentally compared WatchTower to

Approach PLT (sec)
WatchTower (co-located, HTTPS-sharding) 2.32

WatchTower (co-located, HTTP-only) 3.42
WatchTower (cloud, HTTPS-sharding) 2.47

WatchTower (cloud, HTTP-only) 3.50
Vroom-style push+preload hints 3.53

Vanilla HTTP/2 push 4.05
Default 5.18

Table 4: Push+preload versus RDR: median page load times
(PLTs) in the cellular network (with a Nexus 5 phone). With
co-located proxying, each origin server had a 1 ms RTT to
a co-located, per-origin proxy (§4); the cloud proxy setting
used the proxies described in §3.

a proxy-less scenario in which servers pushed all static objects. We
also evaluated a Vroom-style push+preload system [58] in which
each frame in a page pushed objects from the frame’s origin, and
used preload hints [67] to encourage the browser to fetch static
objects from other origins ahead of time.

We ran the experiments on all networks, but due to space re-
strictions, we only show results for the cellular network (Table 4).
There are four key observations:
• WatchTower’s performance is slightly better with proxy co-
location. However, just five cloud-based proxy choices are suffi-
cient to unlock roughly 95% of the benefits enabled by co-located
proxies.

• WatchTower with HTTPS-sharding or HTTP-only is 13.5%–
42.7% faster than vanilla server push. One reason is that, in a
standard push approach, the server can only push statically-
referenced page objects, not dynamic ones generated by (say)
XMLHttpRequests. Further, a server may accidentally push ob-
jects that are not on the dynamic critical path [44, 70]; these
pushes contend for last-mile bandwidth that is coveted by critical
path objects whose fetches are currently blocking the client-side
page load. In contrast, WatchTower’s RDR approach handles
both static and dynamic objects, and streams objects to the client
in the order that the client will naturally request them.

• A Vroom-style approach is only 0.8%–3.1% slower than Watch-
Tower in HTTP-only mode. This is because 68% of the objects in
the test corpus used HTTPS; Vroom can push and preload HTTPS
objects, whereas WatchTower in HTTP-only mode cannot op-
timize HTTPS traffic. WatchTower in HTTP-only mode is still
competitive because (unlike Vroom) it can resolve dynamically-
generated URLs, and avoid blocking issues involving non-critical-
path objects.

• WatchTower with HTTPS-sharding is 30.1%–34.3% faster than
Vroom. In this mode, WatchTower leverages full URL coverage
and optimal object transmission scheduling for both HTTP and
HTTPS traffic.
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Figure 15: WatchTower and always-on proxying when the
most popular X% of origins deployed proxies. These results
used HTTPS sharding and a cellular network.

Partial deployment: In the real world, some origins will not de-
ploy proxies. Figure 15 shows the benefits of incremental proxy
deployment. The experiments used a random set of 100 pages from
the Alexa top 10,000; in each batch of experiments, only the most
popular X% of origins deployed proxies, where popularity of an
origin was defined by the number of references to that origin in
the Alexa top 500 pages. As expected, Figure 15 shows that prox-
ying (either always-on or WatchTower) provides more benefits
when more domains run proxies. However, WatchTower’s benefits
improve faster than those provided by always-on proxying; further-
more, at every level of origin participation, WatchTower provided
more benefits than always-on proxying. Also note that, for X=20%
and X=40%, WatchTower provided 79% and 89% of the speedups
achieved when X=100%.

We also ran an experiment in which only the top-level origin
for each page deployed a proxy. For cellular networks and HTTPS
sharding, WatchTower provided a 1.65×median improvement, com-
pared to 1.87× when all origins deployed proxies. Always-on, top-
level-only proxying enabled a 1.17× improvement, compared to
1.45× when all origins deployed proxies.
Personalized Pages: As described in §6.2, WatchTower collects
dependency graphs using two mechanisms: proxies collect graphs
for popular sites, while client-side plugins collect graphs for long-
tail pages. Since the plugins supply cookies during the fetching of
page content, the plugins are able to construct personalized depen-
dency graphs that reflect user-specific page content. In contrast,
WatchTower proxies do not supply cookies when building depen-
dency graphs for popular sites; as a result, those graphs represent
non-personalized pages. So, for popular sites, WatchTower may use
a non-personalized graph to determine how a client should load a
personalized page.

For pages like facebook.com, there is a large difference between
two personalized versions (e.g., for separate users); deltas are also
large between a personalized version and a non-personalized ver-
sion (i.e., the login page). Fortunately, for many other sites, the
differences between page versions are small, and do not impact
WatchTower’s accuracy. For example, we found 20 random sites
in the Alexa top 500 that supported user accounts, but were not
Facebook-style social networks. For each site, we made a user ac-
count, loaded a personalized page on a mobile phone over a cellular
network, and recorded the median load time with and without
proxy assistance. Finally, we fed the non-personalized dependency

graph to WatchTower, and asked whether a proxy would decrease
load times. For all 20 sites, WatchTower made the correct predic-
tion when deciding between HTTPS-sharding proxying and no
proxying. WatchTower also had perfect accuracy for HTTP-only
proxying. In other words, for all 20 sites, non-personalized graphs
were similar enough to personalized graphs that WatchTower’s
accuracy was unaffected.

Energy usage:WatchTower reduces load times, but does require
extra client-side computation. This extra computation requires
additional power, which is potentially concerning on battery-
constrained mobile devices. To examine WatchTower’s impact on
energy usage, we connected a Nexus 5 Android phone to aMonsoon
power monitor [40]; the phone had a 2.7 GHz quad core proces-
sor with 3 GB of RAM. On a cellular network, WatchTower using
HTTPS sharding reduced power consumption by a median of 22%.
Using HTTP-only resolution, WatchTower reduced energy usage
by a median of 11%. In both cases, the extra energy consumed
by WatchTower computation was far offset by the energy saved
by loading pages faster and allowing the radio to be powered off
sooner.

Browser caching: As discussed in Section 4, remote dependency
resolution can reduce load times even when browser caches are
warm. However, warm caches reduce the number of object fetches
that a proxy can optimize. To determine whether WatchTower
provides benefits in these scenarios, we reran the caching exper-
iment from §4, comparing WatchTower and an always-on proxy
to a browser that never used a proxy. WatchTower used the an-
alytic models from §6.1, associating each cached object with an
estimated fetch latency of 0 ms. Figure 13 shows that WatchTower
still provides significant benefits if caches are warm. For the HTTP-
only scheme, an always-on proxy slows 51.4% of page loads; for
WatchTower, only 1.8% of page loads suffer. For HTTPS-sharding,
always-on proxying hurts 30.8% of loads; WatchTower reduces
that number to 1.7%. For both HTTPS-sharding and HTTP-only
resolution, WatchTower reduces median load times by roughly 40%.

Inaccurate measurements:WatchTower uses empirical measure-
ments to estimate the network latencies between clients, proxies,
and origin servers. However, real network conditions are not sta-
tionary, so WatchTower’s latency estimates may differ from the ac-
tual latencies at page load time. Figure 14 shows that WatchTower’s
benefits are largely insensitive to the use of latency estimates that
are 24 hours stale. The probability that WatchTower hurts load
times increases from 0.97% to 2.4%; median load times are within
0.59%–1.35% of those which use fresh measurements. WatchTower’s
benefits are largely unchanged due to the wide performance gaps
between the proxy schemes from which WatchTower must select—
variance in network latency is rarely large enough to change the
best scheme to use in a particular situation.

We also used the Mahimahi web replay framework [48] to in-
ject controlled amounts of estimation error. We modeled error as
a Gaussian process with a mean of -3% and various amounts of
standard deviation; the slightly-less-than-zero mean was inspired
by observations of the King latency estimation algorithm which
slightly underestimates true RTTs [30]. We tested WatchTower’s
performance on a cellular network, with HTTPS sharding enabled.
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When WatchTower had perfectly accurate RTT estimates, Watch-
Tower provided a median speedup of 1.79×. With Gaussian esti-
mation error that had a mean of -3% and a standard deviation of
10%, WatchTower provided a median speedup of 1.73×. If the stan-
dard deviation doubled to 20%, WatchTower’s median speedup only
decreased to 1.65×.

Dependency graphs are stable over days [16], and we found
that WatchTower is insensitive to the use of stale graphs to drive
predictions. For example, in the cellular network, WatchTower’s
benefit across all RDR schemes drops by less than 3% with 24-hour-
stale graphs.
WatchTower overheads: Having a WatchTower proxy and client
measure latencies to the 4057 distinct origins in our 500 site cor-
pus required 1.95 MB of ping traffic each; shipping proxy-origin
estimates to a client used 28.9 KB. A WatchTower proxy must also
send dependency graphs to clients. Generating those graphs merely
requires loading a page and inspecting the “Initiator” fields in the
browser’s debugging output [28]. The median (95th percentile)
gzipped dependency graph sizes in our corpus were 2.9 KB (92.7
KB). In total, all 500 dependency graphs were 1.71 MB, which is
smaller than a typical web page [33]. At page load time, the client
plugin must perform the graph analysis from §6.1, which takes at
worst 3 ms per page load.

WatchTower proxies mimic client-generated HTTP headers to
ensure that RDR page loads fetch the same objects that would be
fetched by traditional (i.e., proxy-less) page loads (§3). Nevertheless,
a WatchTower proxy may push unnecessary resources to a client.
For example, if a URL is created by JavaScript code and embeds the
current time, then a proxy and its client may generate different ver-
sions of the URL. Such discrepancies will not affect the correctness of
a page load—the client’s request will simply miss in WatchTower’s
client-side cache and require an additional round trip to fetch the
appropriate object. However, the pushing of unnecessary content
does impose a bandwidth penalty. Across the Alexa top 500 sites,
the median page load fetched 31.3 KB of unnecessary objects; at
the 95th percentile, the wastage was 214 KB. To put those numbers
in perspective, the size of the median test page was 1.51 MB.

7 ADDITIONAL RELATEDWORK
Mobileweb optimizations:Klotski [16] uses offline page analyses
to identify high-priority objects (according to a user-specific utility
function), which are pushed to clients using a proxy. Thus, Klotski
can only securely accelerate loads for HTTP pages, and like simpler
push policies, is limited to pushing static objects that are discovered
offline. In contrast, WatchTower can securely speed up the loading
of static and dynamic objects that are served with HTTP or HTTPS.

AMP [25] requires mobile pages to be rewritten using restricted
forms of HTML, JavaScript, and CSS, that are known to be perfor-
mant; compliant pages are served from Google CDNs. Unlike AMP,
WatchTower is able to accelerate loads of legacy pages. Moreover,
WatchTower can speed up AMP page loads by hiding serial network
round trips; these latencies are significant even for content served
from CDNs as individual requests must traverse a client’s slow last
mile.

Polaris [44] uses a client-side scheduler to reorder requests ac-
cording to pre-computed dependencies between a page’s objects;
the goal is to maximally overlap round trips over the client’s last

mile. Polaris naturally preserves end-to-end security (by not us-
ing a proxy), but all round trips are still incurred over the client’s
slow last-mile link, limiting potential benefits. Instead, WatchTower
selectively shifts round trips to fast proxy-origin links, further re-
ducing last-mile round trips. WatchTower’s proxy could speed up
its page loads by loading Polaris-optimized pages.

Secure middleboxes: BlindBox [59] enables a proxy to perform
deep packet inspection on an HTTPS flow, only discovering clear-
text that matches a preset filter. This is insufficient for remote
dependency resolution, since an RDR proxy must evaluate entire
cleartext objects, not parts of them that match a filter. mcTLS [42]
is more flexible, allowing a user and a particular HTTPS origin
to authenticate a middlebox, and selectively disclose data using
different encryption streams. mcTLS can allow a middlebox to see
and evaluate an entire cleartext object. At first glance, this might
appear sufficient to build a trusted RDR proxy for HTTPS content.
However, when a client initiates a page load, she lacks a priori
knowledge of the HTTPS origins that will contribute objects to the
page. Further, a typical client loads many different pages in a day.
Thus, RDR proxies using mcTLS would face a challenging key man-
agement problem—users would have to make frequent pairwise
trust decisions involving many origins. HTTPS sharding imposes
a smaller cognitive burden on users, and does not require HTTPS
content to be shared with anyone except the HTTPS endpoints.

8 CONCLUSION
In this paper, we identify and eliminate two key barriers to effi-
cient remote dependency resolution. First, we explain why HTTPS
introduces a tension between security and performance with re-
mote dependency resolution; we resolve this tension using HTTPS
sharding, a new resolution technique which allows HTTPS traffic
to be proxied without revealing sensitive data to untrusted ori-
gins. Second, we demonstrate that always-on proxying (the default
mode for state-of-the-art proxies) actually increases load times in
many cases. We introduce WatchTower, a new proxy which uses
HTTPS sharding and selective proxying to load pages 21.2%–41.3%
faster than state-of-the-art proxies and server push systems, while
preserving the end-to-end security of HTTPS.
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