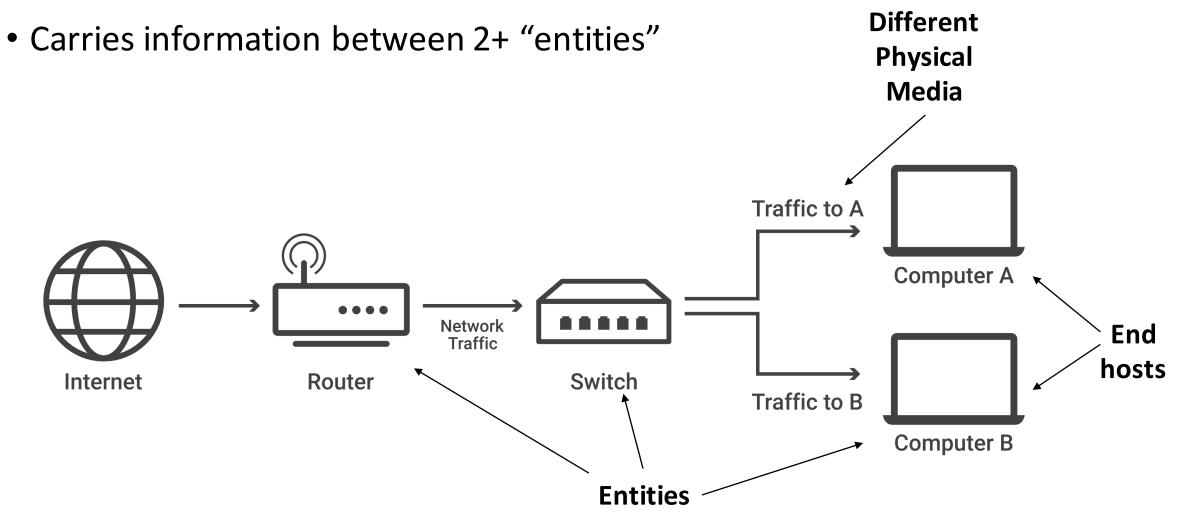
COS 561: Advanced Computer Networks

Prof. Ravi Netravali (rnetravali@cs.princeton.edu) TA: Mike Wong (mikedwong@cs.princeton.edu)

https://cos561.princeton.systems/

Today's Agenda


• Brief course motivation and topic overview

• Course logistics + Intros

• "Design Philosophy" paper by David Clark

Computer networking: the study of how the Internet (and more generally, any inter-network) is designed and operated

What is a network?

Why Study Networking?

• A means of connecting people with each other, and with content!

Why Study Networking?

• Alternately: connects devices of all forms

Constantly Evolving

• Internet started as experiment, with military focus

• Now services >3 Billion people worldwide (and counting!)

- Driven by new applications and services, and low barrier to entry
 - In-body networks, 5G/6G, your next app...

Interdisciplinary

- Operating Systems: how does end host share network interface amongst competing apps?
- **Programming Languages**: how to program the network? How to effectively write networked applications?
- Formal Verification: how to ensure that the network (and network protocols) do what they are intended to do (and nothing else)?
- **Machine Learning**: ML-for-networking (e.g., learning routing policies, anomaly detection), Networking-for-ML (e.g., efficient distributed training)

And more... e.g., HCI (application-user interfaces), hardware, physics, etc.

Studying Networking

	OSI Layer	TCP/IP	Datagrams are called	
Software	Layer 7 Application	HTTP, SMTP, IMAP, SNMP, POP3, FTP	Upper Layer Data Segment	
	Layer 6	ASCII Characters, MPEG, SSL, TSL,		
	Presentation	Compression (Encryption & Decryption)		
	Layer 5	NetBIOS, SAP, Handshaking connection		
	Session	· · · ·		
	Layer 4	TCP, UDP		
	Transport	TCF, ODF		
	Layer 3		Packet	
	Network	IPv4, IPv6, ICMP, <u>IPSec</u> , MPLS, ARP		
Hardware	Layer 2	Ethernet, 802.1x, PPP, ATM, Fiber	Frame	
	Data Link	Channel, MPLS, FDDI, MAC Addresses		
	Layer 1	Cables, Connectors, Hubs (DLS, RS232,	Bits	
	Physical	10BaseT, 100BaseTX, ISDN, T1)	DILS	

Goals of this class

- **Principles** used to build computer networks and services
- Study core network concepts in the context of today's goals/problems
- Learn how to read network/systems research papers critically
- Articulate understanding and thoughts about paper
- Formulate and carry out research projects
- Present research results

Topics

- Internet Design + Architecture
- Layer operation (e.g., network, transport, congestion control)
- Routing and network programming (e.g., SDN)
- Applications (e.g., video systems, ML training)
- Infrastructure (e.g., middleboxes, CDNs)

Course Logistics

Tie to COS 461

- Unlike previous year, 561 students do not have to do 461 assignments/lectures/exams
- 561 students, however, are responsible for 461 material
 - Will be important *background* for papers + discussions
 - Assumed knowledge for discussions and exams
- The schedule mirrors 461; you are responsible for attending 461 lectures and office hours as needed

Grading

• 30% Participation (during precepts, Perusall, paper presentation)

• 30% Midterm Exam

• 40% Research Project

Reading/Discussing Papers

- ~1 paper per week
- Topic related to COS 461 lectures during the same week
- Upload >= 5 insightful comments to Perusall by Wednesday at 11pm
 - Follow-on research
 - Generalize/specialize to different settings
 - Thoughts on improving evaluation
 - Deployment considerations
 - Connections to previously studied topics/papers

Paper Presentation

- Discussion will start with a group of students presenting the paper in depth. Presentations should be 20-25 mins, and cover:
 - What problem is it solving and why is it important?
 - What is prior work and where does it fail?
 - How does the solution work (in detail) and what are the key insights?
 - Evaluation setup and results?
 - Open questions remaining after this solution?
 - Seed discussion: cover Perusall notes and more
- Everyone is expected to participate!

Exam

- Take home: April 11-12 (Tuesday-Wednesday)
- Short answers testing:
 - Understanding of the settings/solutions in research papers
 - Ability to apply solutions to new settings, tweak them for different goals, etc.
- COS 461 background is assumed

Research Project

- In groups of 3-4 students; must involve programming
 - Start early!!!

Reproducing research

- Implement solution described in paper
- Evaluate implementation to (1) reproduce findings (or explain why they could not be reproduced), and (2) evaluate in new conditions or on new metrics
- Can be covered paper or another networking-related one

Novel research

- Establish problem, limitations of prior work, new solution, implementation, and evaluation
- Must *directly* relate to networking topics

Research Project Timeline/Deliverables

	ormations due	Lectures end	Final report
	abruary 17	April 21	Due May 9 (Dean's Date)
Lectures begin	Project proposal	Project presentations	
February 3	Due March 10	April 28 (in class)	

• **Project proposal** (2-3 pages): describe the elements on the previous slide, e.g., for novel research: list problem of focus, related work and its limitations, proposed solution, and implementation plan

- Okay to pivot!
- **Project presentations**: ~10 minute in-class presentations
- **Final report** (6 pages): conference-style paper detailing problem, challenges, solution, results, and related work

Questions?

The Design Philosophy of the DARPA Internet Protocols

David D. Clark