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Introduction

e Roles of Reinforcement learning in Networking and Systems

e Roles of RLin:
o Congestion Control (CC)
o Adaptive Bitrate (ABR)
o Load Balancing (LB)



Issues with RL

Issues in:

e Training on wide area Networks: Suboptimal Performance
e Training on narrow distribution: Poor Generalization



Genet

e Training framework that generate training curricula for network adaptation
policies
e Built on curriculum learning
o Gradual increase of difficulty levels of training environment



Genet as an idea

e [arge gap-to-baseline -> rewarding environment
o Difference in performance of RL policy that falls behind traditional rule-based baseline

e Genet generates RL training on environment with large gap-to-baseline RL
models

e Generic in nature as it uses rule based algorithms
o Doesn’t use handcrafted heuristics to measure the difficulty of network environment

e Genet performance as compared to RL based training:
o ABR: 8-25% up
o CC:14-24% up
o LB:15% up



Motivation

Observing RL performance on:

e ABR: Chunk level video bitrate to the dynamics of throughput and playback
buffer over the course of video session

e CC: Determines sending rate at transport layer based on sender’s
observation

e LB: distributed database that reroutes each request to one of the servers



RL Performance

Use case Observed state (policy input) Action (policy output) Reward (performance)

Adaptive Bitrate (ABR) future chunk size, history throughput, current  bitrate selected for the 2.i(a - Rebuf; + f - Bitrate;

Streaming buffer length next video chunk + y - BitrateChange;) /n
RTT inflation, sending/receiving rate, change of sending rate in 2i(a - Throughput;

Cngeruon Control (€C) avg RTT in a time window, min RTT the next time window + b - Latency; + ¢ - LossRate;) /n

past throughput, current request size, number  server selection for

Load B ing (LB
oad Balancing (LB) of queued requests per server the current request

- 2 Delay;/n

Table 1: RL use cases in networked systems. Default reward parameters: & = —10 (rebuffering in seconds), p = 1 (bitrate in Mbps), y = —1 (bitrate
change in Mbps), a = 120 (throughput in kbps), b = —1000 (latency in seconds), c = —2000. Details in A.5.

Retrieved as Table1 from https://doi.org/10.1145/3544216.3544243



Challenge 1

Training over wide environment distributions:

e 3 RL distributions: RL1, RL2, RL3
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(a) Performance gains of RL schemes over the baselines diminish as the target
distribution spans a wide range of environments.

Retrieved as Figure 2 from https://doi.org/10.1145/3544216.3544243

Poor performance on widespread network environments (bandwidth values)

Fig(a): RL performance over baselines diminishes when range of target environment

Fig(b): RL performance falling behind baselines on test environments
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(b) Even if RL schemes perform better on average, they are worse than the
baselines on a substantial fraction of test environments.



Challenge 2

Low generalizability:

e Existing RL training methods trained on one distribution not performing well on different environment

distribution
e Fig(a): RL based CC trained tested on synthetic simulation, rule based baseline bbr, cellular and

ethernet data from Pantheon
e Fig(b): cellular and ether trained CC tested on baseline bbr, cellular and ethernet data
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(b) RL-based CC trained over one real trace set performs worse on another real

(a) RL-based CC trained in synthetic network environments performs worse
trace set than the rule-based baseline.

on real network traces than the rule-based baseline.
Retrieved as Figure 3 from https://doi.org/10.1145/3544216.3544243
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Big Goal

® How to improve RL training such that the learned adaptation policies achieve good asymptotic
performance across a broad range of target network environments?




Curriculum learning in RL

® Unlike the traditional RL training that samples training environments from a fixed distribution in each

iteration, curriculum learning varies the training environment distribution to gradually increase
the difficulty of training environments

® Training will see more environments that are more likely to improve, which we refer to as rewarding
environments

® In many RL applications, prior work has shown the promise of curriculum learning, namely faster
convergence, higher asymptotic performance, and better generalization




Curriculum Learning Theory

® Curriculum allows the model to optimize a family of gradually less smooth loss functions and

prevents it from being trapped in local minima

® In the early stage of the curriculum, easier training samples are selected to comprise a smoothed
loss function that reveals the big picture and is easier to optimize. The resulting model serves
as a good starting point when more difficult samples are introduced to the training, reducing the
smoothness of the loss function and making it harder to optimize.




Big question: how to define what is a rewarding
environment? Here are three strawman approaches

e Inherent properties

o E.g.in congestion control, network traces with higher bandwidth variance

o This only differs environment in handpicked properties but not something more complex
e Performance of rule based methods

o  While it can distinguish any two environments, it does not hint at how to improve RL
e Performance gap to the optimum

o Optimum is hard to get



Discussion: could you infer from the graphs here why
using gap to optimum approach fails here?

—— Average BW —— Average BW

-- RL test reward: 0.69 15 ---- RL test reward: 1.84 Isttnewadon Test reward on
------ Rule-based test reward: 0.73 -~ Rule-based test reward: 2.75

10 H r_l improved by 10.2

 § e =N Vi SR
o . H T N U R _rl ln p ,'77'1\' f‘ 4!3\ ,-'/’_-i‘\. S, X w__:{:{j"\—/jj X '\/\_/\/w

S Rt S - UL 0 el Ul e W) improved by 2.6
0 20 40 60 -0 20 40 60 0 5 10 15 0 5 10 15
Timestamp (s) Timestamp (s) Training iterations (x100) Training iterations (x100)

(a) Trace in X (hard) (b) Trace in Y (improvable) (a) Add X to training (b) Add Y to training



Outline

Motivation and related works
Curriculum learning

Design and implementation
Experimental evaluations



Curriculum generation

e (Gap-to-baseline: Genet identifies rewarding environments where RL policy

performs worse than rule-based baselines by a large margin
o RL policy could learn to imitate known rules and perform at least as good as baselines.
o While RL trained policy is sensitive to what environments are seen during training, traditional
rule-based baselines are less susceptible to such discrepancies
o So rule-based methods are seen as complementary to RL-trained models



Curriculum generation

e Compare gap-to-baseline and gap-to-optimum
o There are more potential room to improve current RL model by using gap-to-baseline than
gap-to-optimum as metrics in ABR and CC environments

Pearson correlation coef.: 0.49 Pearson correlation coef.: 0.85
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Left: amount of training improvements w.r.t gap-to-optimum values.
Right: amount of training improvements w.r.t gap-to-baseline values.



Training framework: overview

e Repeat:
o Update RL model over current training environment distribution for some number of iterations
o Use gap-to-baseline metrics to select rewarding environments compared to the current model
o Change the next training environment distribution by promoting these rewarding environments
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Training framework: traditional RL training

e Environment configurations in synthetic simulators
o E.g. bandwidth 2-3 Mbps, bandwidth changing frequency 0-20s, buffer length 5-10s

e Augment training environments with real traces when available
o E.g. categorize bandwidth trace with related parameters; sample a bandwidth trace whose
parameters fall into the range of selected configurations

e \When training the policy, training environments are uniformed sampled from
distribution of configurations



Training framework: sequencing module

e After fixed number of iterations, current RL model and a pre-determined
rule-based baseline are used to search for rewarding environments with high
gap-to-baseline values

o Ideally want to evaluate on all possible inputs in environment configuration space

e Approach: Bayesian optimization (BO) approximates function value Gap(p)

given input p from configuration space Gap(p) = Rz, p) - R(z}. p)

o Evaluate in k=10 randomly generated environments from configuration p to perform search
o Update environment distribution for next iterations of training: Qcur <« (1 =w) - Qcur + W+ {pPrew}



Design choices and implementations

e How to choose rule-based baselines?
o Don’t have to be optimal and shouldn’t fail under simple cases
m E.g. MPC in ABR; Cubic and BBR in CC; shortest-job-first in LB
o Potential improvement: ensemble of rule-based baselines as heuristics. Prioritize
environments where RL policy worse than anyone in the set of baselines

e Discussion: What if a rule-based baselines does not exist?

o Reduce to traditional RL training but lose benefits of curriculum learning
Use gap between optimal solution based on ground truth knowledge and current RL model

Treat a trained RL model as a rule-based baseline
Other possibilities?

o O O



Design choices and implementations

e \Why to use BO?

o Challenges: 1) high-dimensional search space, 2) computationally expensive to evaluate a
gap-to-baseline value
o Potential alternative: set a threshold for gap-to-baseline value under selected environment
m Searching this way may not end if current RL model already better than baseline
m Introduce additional complexity to tune this hyperparameter

e How to deal with forgetting?

o Ideally we want to train on whole space of environment configurations
o Model is still trained on environments from initial distribution until the end, since newly updated
distribution is a weighted combination of original and identified rewarding environments



Design choices and implementations

e Integrate with existing algorithms: Pensieve for ABR, Aurora for CC, Park for
LB

Environment config set GENET Integration
RL training code:
_RL_Model = Train (ConfigDistrib, Numliters) ||~ Simulator
| “[|- RLoptimizer
GENET Reward = Test (RL_Model, ConfigDistrib, NumTests) (A3C, PPO, ...
Optimizer | % > Z 1

_Reward = Test (Baseline, ConfigDistrib, NumTests)

»| CC (Aurora), ABR
(Pensieve), LB (Park)
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Evaluation Setup - Overview

1. Synthetic environments
2. Trace-drive environments

3. Baselines comparison

a. Genet vs. traditional-RL algorithms
b. Genet vs. traditional rule-based algorithms



Evaluation Setup - Overview

1. Synthetic environments
2. Trace-drive environments

3. Baselines comparison

a. Genet vs. traditional-RL algorithms
b. Genet vs. traditional rule-based algorithms

We show:

e Genet improves the performance and generalization of RL algorithms
e Genet policies have a higher chance to outperform rule-based baselines
e Genet’s design choices are effective against alternatives



Evaluation Setup

1. Synthetic environments
a. Using §A.2 and Tables 3, 4, 5
b. Chosen parameters impacts RL performance

2. Trace-drive environments
Real traces for CC and ABR across training/testing environments

a.
b. ABR tested w/ pre-recorded video over 290 traces from FCC broadband measurements
c. CC tested w/ 121 cellular traces and 112 Ethernet traces
N Use Training Testing
ame case # traces, total length (s)  # traces, total length (s)
FCC ABR 85, 105.8k 290, 89.9k
Norway  ABR 115, 30.5k 310, 96.1k
Ethernet CC 64, 1.92k 112, 3.35k
Cellular CC 136, 4.08k 121, 3.64k

Table 2: Network traces used in ABR and CC tests.



ABR Parameter RL1 RL2 RL3 Default Original

Max playback buffer (s) [2, 10] [2, 50] [2, 100] 60 60
Video chunk length (s) [1, 4] [1, 6] [1, 10] 4 4
Min link RTT (ms) [20,30] [20,220] [20,1000] 80 80
Video length (s) [40, 45] [40,200]  [40, 400] 196 196
Bandwidth change interval (s) [2,2] [2, 20] [2, 100] 5
Max link bandwidth (Mbps) [2,5] [2,100] [2, 1000] 5

Table 3: Parameters in ABR simulation. Colored rows show the configurations (and their ranges) used in the simulator in the original paper. The
synthetic trace generator is described in §A.2.

CC Parameter RL1 RL2 RL3 Default  Original
Maximum link bandwidth (Mbps) [0.5, 7] [0.4,14] [0.1, 100] 3.16 [1.2, 6]
Minimum link RTT (ms) [205,250]  [156,288] [10, 400] 100  [100, 500]
Bandwidth change interval (s) [11,13] [8, 3] [0, 30] 7.5

Random loss rate [0.01,0.014] [0.007,0.02] [0, 0.05] 0 [0, 0.05]
Queue (packets) [2, 6] [2, 11] [2, 200] 10  [2,2981]

Table 4: Parameters in CC simulation. Colored rows show the configurations (and their ranges) used in the simulator in the original paper. The
synthetic trace generator is described in §A.2. The range of RL1 is defined as 1/9 of the range of RL3 and the range of RL2 is defined as 1/3 of RL3.
The CC parameters shown here for RL1 and RL2 are example sets.

LB Parameter RL1 RL2 RL3 Default Original
Service rate [0.1, 2] [0.1,5]  [0.1,10] [0.5, 1.0, 2.0] [2, 4]
Job size (byte) [100, 200]  [100, 10%] [1, 104] 2000 [100, 1000]
Job interval (ms) [0.01,0.05] [0.01,0.1] [0.1, 1] 0.1 0.2
Number of jobs [10,100] [10,1000] [10, 5000] 2000 1000
Queue shuffled probability [0.1,0.2] [0.1,0.5] [0.1,1] 0.5

Table 5: Parameters in LB simulation. Colored rows show the configurations (and their ranges) used in the simulator in the original paper. The
synthetic trace generator is described in §A.2.



Evaluation Setup

3. Baselines comparison

e Compare against traditional RL-trained policies (“baseline” ML)
o RL1, RL2, RL3 from previous slide
o Compare against trace-driven environments

e Compare against traditional rule-based algorithms (“baseline” non-ML)
o ABR (adaptive bitrate streaming) — BBA, RobustMPC
o CC (congestion control) — PCC-Vivance, BBR, Cubic
o LB (load-balancing) — Least-load-first



Evaluation - Asymptotic Performance

Compare Genet-trained policies vs. traditionally-trained RL policies

1. Synthetic environments

2. Trace-driven environments



Evaluation - Asymptotic Performance

Synthetic environments
- Traditional-RL training shows little improvement over rule-based baselines
- Genet-trained CC, ABR, LB policies do:

(Under RL3 synthetic range)
8—-25% for ABR

CcC ABR LB
- 14-24% for CC 7 : .
- 15% for LB %50 1
825 -6
0 0

RL1 RL2 RL3Genet - RL1 RL2 RL3Genet RL1 RL2 RL3Genet
Figure 9: Comparing the performance of GENET-trained RL policies
for CC, ABR, and LB, with baselines in unseen synthetic environments

drawn from the training distribution, which sets all environment
parameters to their full ranges.



Evaluation - Asymptotic Performance

Synthetic environments in example scenario (ABR)
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Figure 10: Test of ABR policies along individual env-parameters.



Evaluation - Asymptotic Performance

Synthetic environments in example scenario (LB)
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Figure 11: Test of LB policies along individual env-parameters.



Evaluation - Asymptotic Performance

Trace-driven environments

- Tested with genet-trained CC, ABR algorithm

- Using FCC & Norway for ABR training/testing
- Using Ethernet & Cellular for CC training/testing

- Uses a combination of real-to-synthetic traces for training

RL (synthetic + real)

200 RL (synthetic + real) ©0.6
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(a) Congestion control (CC) (b) Adaptive bitrate (ABR)

Figure 12: Asymptotic performance of GENET-trained CC policies (a)
and ABR policies (b) and baselines, when the real network traces are
randomly split into a training set and a test set.



Evaluation - Generalization to trace-driven environments

Genet and traditional-RL policies for ABR and CC

- trained over synthetic environments (RL3 range)
- tested on trace-driven environments from previous table

Extreme case of previous study:

When no real data is available during training, Genet still outperforms the
traditional-RL models on trace-driven environments!



Evaluation - Generalization to trace-driven environments
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Figure 13: Generalization test: Training of various methods is done

entirely in synthetic environments, but the testing is over various real
network trace sets.



Evaluation - Generalization to trace-driven environments

- Asymptotic performance when traces are used to train

RL (synthetic + real)
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Figure 12: Asymptotic performance of GENET-trained CC policies (a)
and ABR policies (b) and baselines, when the real network traces are
randomly split into a training set and a test set.



Evaluation against rule-based baselines

- Choosing meaningful rule-based baselines?

- How likely is Genet to outperform these rule-based baselines?
- Again, how does this playout with real-world tests?

-  Why Genet vs. other design choices?



Using naive/bad baselines

e \Want to prove that we should use relatively good baselines
o Authors used bad baseline: choosing highest bitrate when rebuffering in ABR and choosing
highest load server in load balancing
o Ineach case, BO based search fail to find good training environment b/c RL quickly
outperforms baseline
o Suggests that negative impact of using naive baseline is restricted to selecting environments



Performance compared to rule based methods in synthetic
environments
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Performance in real environment

e The author also test the Genet-trained ABR and CC policies in five real wide-area network paths
and track real network trafficking .

e For statistical confidence, the authors run the Genet-trained policies and their baselines
back-to-back, each at least five times

e Outperforms in all but two case

Path 1 Path 2 Path 3 Path 4 Path 5 Path 1 Path 2 Path 3
wired—wired wired—wifi wired—cellular cloud—wifi cloud—wifi wired—wired wired—cellular wired—wifi
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MPC BBA Genet MPC BBA Genet MPC BBA Genet MPC BBA Genet MPC BBA Genet BBR Cubic Genet =~ BBR Cubic Genet ~ BBR Cubic Genet
(a) ABR (b) CC

Figure 16: Testing ABR and CC policies in real-world environments.



Failure case

e Negative performance in path 2 in CC because network has a deeper queue

than in training

e Show that policy does not generalize to all environment but only for certain

range
Path 1 Path 2 Path 3
wired—wired wired—-cellular wired—wifi
100 % E—2000 ?
-500 &
0
-100

Path CC  Throughput (Mbps) 90th percentile latency (ms) Packet loss rate Reward

BéR Cu'bic Ge'net BL";R Cu‘bic Gelnet

(b)CcC

BéR Cu'bic Ge'net

BBR 164.2 57.25 0.0906 -35.62
Path1 Cubic 158.2 56.60 0.0072 104.2
GENET 180.5 55.54 0.0063 152.1
BBR 0.2108 3346 0.0407 -1721
Path2 Cubic 0.2149 6978 0.2206 -4273
GENET 0.1975 6381 0.0267 -3178
BBR 5.40 1581 0.0136 -705.9
Path3 Cubic 6.63 1400 0.0382 -719.1
GENET 491 1180 0.0075 -439.9

Table 7: Reward breakdown of Figure 16(b) in CC real-world experiments.



Effects of design choices

e Compare to other curriculum learning schemes:
o CL1: hand-picked heuristics by increasing bandwidth fluctuation frequency
o CL2: gradually picking environments where rule-based baselines perform bad
o CL3: adding traces using gap-to-optimum metrics

— Gonet ™« RI3 ~— OL1 = CL2 == ©OL3
ABR
T T
© ©
: 3 100
2 Iz
= 2 5
S S
2 =
0 20 40 % 25 s 75

Training iterations (x1000) Training iterations (x1000)



Effects of design choices

e Compare to “Robustifying” baseline:

o Robustifying baseline: train another policy to improve current model by generating adversarial
network traces in ABR environments

o BO w/ Robustifying reward: search for configurations that maximize the gap between current

model and optimal reward, penalized by bandwidth non-smoothness at different weights
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Effects of design choices

e Compare to efficiency of other search approaches:
o Random search: uniform sample from environment configuration space
o Grid search: search and update each configuration one by one

e BO searches for much fewer steps and able to find high gap-to-baseline
values compared to other baselines
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Thanks!



