
Genet

Automatic Curriculum Generation for Learning
Adaptation in Networking

Presenters:
Chenyue, Kuba, Sumit, Xinran

Outline

● Motivation and related works
● Curriculum learning
● Design and implementation
● Experimental evaluations

Outline

● Motivation and related works
● Curriculum learning
● Design and implementation
● Experimental evaluations

Introduction

● Roles of Reinforcement learning in Networking and Systems
● Roles of RL in:

○ Congestion Control (CC)
○ Adaptive Bitrate (ABR)
○ Load Balancing (LB)

Issues with RL

Issues in:

● Training on wide area Networks: Suboptimal Performance
● Training on narrow distribution: Poor Generalization

Genet

● Training framework that generate training curricula for network adaptation
policies

● Built on curriculum learning
○ Gradual increase of difficulty levels of training environment

Genet as an idea

● Large gap-to-baseline -> rewarding environment
○ Difference in performance of RL policy that falls behind traditional rule-based baseline

● Genet generates RL training on environment with large gap-to-baseline RL
models

● Generic in nature as it uses rule based algorithms
○ Doesn’t use handcrafted heuristics to measure the difficulty of network environment

● Genet performance as compared to RL based training:
○ ABR: 8-25% up
○ CC: 14-24% up
○ LB: 15% up

Motivation

Observing RL performance on:

● ABR: Chunk level video bitrate to the dynamics of throughput and playback
buffer over the course of video session

● CC: Determines sending rate at transport layer based on sender’s
observation

● LB: distributed database that reroutes each request to one of the servers

RL Performance

Retrieved as Table1 from https://doi.org/10.1145/3544216.3544243

Challenge 1

Training over wide environment distributions:

● Poor performance on widespread network environments (bandwidth values)
● 3 RL distributions: RL1, RL2, RL3
● Fig(a): RL performance over baselines diminishes when range of target environment

expands
● Fig(b): RL performance falling behind baselines on test environments

Retrieved as Figure 2 from https://doi.org/10.1145/3544216.3544243

Challenge 2

Low generalizability:

● Existing RL training methods trained on one distribution not performing well on different environment
distribution

● Fig(a): RL based CC trained tested on synthetic simulation, rule based baseline bbr, cellular and
ethernet data from Pantheon

● Fig(b): cellular and ether trained CC tested on baseline bbr, cellular and ethernet data

Retrieved as Figure 3 from https://doi.org/10.1145/3544216.3544243

Outline

● Motivation and related works
● Curriculum learning
● Design and implementation
● Experimental evaluations

Big Goal

● How to improve RL training such that the learned adaptation policies achieve good asymptotic
performance across a broad range of target network environments?

Curriculum learning in RL

● Unlike the traditional RL training that samples training environments from a fixed distribution in each
iteration, curriculum learning varies the training environment distribution to gradually increase
the difficulty of training environments

● Training will see more environments that are more likely to improve, which we refer to as rewarding
environments

● In many RL applications, prior work has shown the promise of curriculum learning, namely faster
convergence, higher asymptotic performance, and better generalization

Curriculum Learning Theory

● Curriculum allows the model to optimize a family of gradually less smooth loss functions and
prevents it from being trapped in local minima

● In the early stage of the curriculum, easier training samples are selected to comprise a smoothed
loss function that reveals the big picture and is easier to optimize. The resulting model serves
as a good starting point when more difficult samples are introduced to the training, reducing the
smoothness of the loss function and making it harder to optimize.

Big question: how to define what is a rewarding
environment? Here are three strawman approaches

● Inherent properties
○ E.g. in congestion control, network traces with higher bandwidth variance
○ This only differs environment in handpicked properties but not something more complex

● Performance of rule based methods
○ While it can distinguish any two environments, it does not hint at how to improve RL

● Performance gap to the optimum
○ Optimum is hard to get

Discussion: could you infer from the graphs here why
using gap to optimum approach fails here?

Outline

● Motivation and related works
● Curriculum learning
● Design and implementation
● Experimental evaluations

Curriculum generation

● Gap-to-baseline: Genet identifies rewarding environments where RL policy
performs worse than rule-based baselines by a large margin

○ RL policy could learn to imitate known rules and perform at least as good as baselines.
○ While RL trained policy is sensitive to what environments are seen during training, traditional

rule-based baselines are less susceptible to such discrepancies
○ So rule-based methods are seen as complementary to RL-trained models

Curriculum generation

● Compare gap-to-baseline and gap-to-optimum
○ There are more potential room to improve current RL model by using gap-to-baseline than

gap-to-optimum as metrics in ABR and CC environments

Left: amount of training improvements w.r.t gap-to-optimum values.
Right: amount of training improvements w.r.t gap-to-baseline values.

Training framework: overview

● Repeat:
○ Update RL model over current training environment distribution for some number of iterations
○ Use gap-to-baseline metrics to select rewarding environments compared to the current model
○ Change the next training environment distribution by promoting these rewarding environments

Training framework: traditional RL training

● Environment configurations in synthetic simulators
○ E.g. bandwidth 2-3 Mbps, bandwidth changing frequency 0-20s, buffer length 5-10s

● Augment training environments with real traces when available
○ E.g. categorize bandwidth trace with related parameters; sample a bandwidth trace whose

parameters fall into the range of selected configurations
● When training the policy, training environments are uniformed sampled from

distribution of configurations

Training framework: sequencing module

● After fixed number of iterations, current RL model and a pre-determined
rule-based baseline are used to search for rewarding environments with high
gap-to-baseline values

○ Ideally want to evaluate on all possible inputs in environment configuration space
● Approach: Bayesian optimization (BO) approximates function value Gap(p)

given input p from configuration space
○ Evaluate in k=10 randomly generated environments from configuration p to perform search
○ Update environment distribution for next iterations of training:

Design choices and implementations

● How to choose rule-based baselines?
○ Don’t have to be optimal and shouldn’t fail under simple cases

■ E.g. MPC in ABR; Cubic and BBR in CC; shortest-job-first in LB
○ Potential improvement: ensemble of rule-based baselines as heuristics. Prioritize

environments where RL policy worse than anyone in the set of baselines
● Discussion: What if a rule-based baselines does not exist?

○ Reduce to traditional RL training but lose benefits of curriculum learning
○ Use gap between optimal solution based on ground truth knowledge and current RL model
○ Treat a trained RL model as a rule-based baseline
○ Other possibilities?

Design choices and implementations

● Why to use BO?
○ Challenges: 1) high-dimensional search space, 2) computationally expensive to evaluate a

gap-to-baseline value
○ Potential alternative: set a threshold for gap-to-baseline value under selected environment

■ Searching this way may not end if current RL model already better than baseline
■ Introduce additional complexity to tune this hyperparameter

● How to deal with forgetting?
○ Ideally we want to train on whole space of environment configurations
○ Model is still trained on environments from initial distribution until the end, since newly updated

distribution is a weighted combination of original and identified rewarding environments

Design choices and implementations

● Integrate with existing algorithms: Pensieve for ABR, Aurora for CC, Park for
LB

Outline

● Motivation and related works
● Curriculum learning
● Design and implementation
● Experimental evaluations

Evaluation Setup - Overview

1. Synthetic environments
2. Trace-drive environments
3. Baselines comparison

a. Genet vs. traditional-RL algorithms
b. Genet vs. traditional rule-based algorithms

Evaluation Setup - Overview

1. Synthetic environments
2. Trace-drive environments
3. Baselines comparison

a. Genet vs. traditional-RL algorithms
b. Genet vs. traditional rule-based algorithms

We show:

● Genet improves the performance and generalization of RL algorithms
● Genet policies have a higher chance to outperform rule-based baselines
● Genet’s design choices are effective against alternatives

Evaluation Setup

1. Synthetic environments
a. Using §A.2 and Tables 3, 4, 5
b. Chosen parameters impacts RL performance

2. Trace-drive environments
a. Real traces for CC and ABR across training/testing environments
b. ABR tested w/ pre-recorded video over 290 traces from FCC broadband measurements
c. CC tested w/ 121 cellular traces and 112 Ethernet traces

Evaluation Setup

3. Baselines comparison

● Compare against traditional RL-trained policies (“baseline” ML)
○ RL1, RL2, RL3 from previous slide
○ Compare against trace-driven environments

● Compare against traditional rule-based algorithms (“baseline” non-ML)
○ ABR (adaptive bitrate streaming) → BBA, RobustMPC
○ CC (congestion control) → PCC-Vivance, BBR, Cubic
○ LB (load-balancing) → Least-load-first

Evaluation - Asymptotic Performance

Compare Genet-trained policies vs. traditionally-trained RL policies

1. Synthetic environments

2. Trace-driven environments

Evaluation - Asymptotic Performance

Synthetic environments

- Traditional-RL training shows little improvement over rule-based baselines
- Genet-trained CC, ABR, LB policies do:

- (Under RL3 synthetic range)
- 8–25% for ABR
- 14– 24% for CC
- 15% for LB

Evaluation - Asymptotic Performance
Synthetic environments in example scenario (ABR)

Evaluation - Asymptotic Performance
Synthetic environments in example scenario (LB)

Evaluation - Asymptotic Performance

Trace-driven environments

- Tested with genet-trained CC, ABR algorithm
- Using FCC & Norway for ABR training/testing
- Using Ethernet & Cellular for CC training/testing

- Uses a combination of real-to-synthetic traces for training

Genet and traditional-RL policies for ABR and CC

- trained over synthetic environments (RL3 range)
- tested on trace-driven environments from previous table

Extreme case of previous study:

When no real data is available during training, Genet still outperforms the
traditional-RL models on trace-driven environments!

Evaluation - Generalization to trace-driven environments

Evaluation - Generalization to trace-driven environments

- Asymptotic performance when traces are used to train

Evaluation - Generalization to trace-driven environments

Evaluation against rule-based baselines

- Choosing meaningful rule-based baselines?
- How likely is Genet to outperform these rule-based baselines?
- Again, how does this playout with real-world tests?
- Why Genet vs. other design choices?

Using naive/bad baselines

● Want to prove that we should use relatively good baselines
○ Authors used bad baseline: choosing highest bitrate when rebuffering in ABR and choosing

highest load server in load balancing
○ In each case, BO based search fail to find good training environment b/c RL quickly

outperforms baseline
○ Suggests that negative impact of using naive baseline is restricted to selecting environments

Performance compared to rule based methods in synthetic
environments

Performance in real environment

● The author also test the Genet-trained ABR and CC policies in five real wide-area network paths
and track real network trafficking .

● For statistical confidence, the authors run the Genet-trained policies and their baselines
back-to-back, each at least five times

● Outperforms in all but two case

Failure case

● Negative performance in path 2 in CC because network has a deeper queue
than in training

● Show that policy does not generalize to all environment but only for certain
range

Effects of design choices

● Compare to other curriculum learning schemes:
○ CL1: hand-picked heuristics by increasing bandwidth fluctuation frequency
○ CL2: gradually picking environments where rule-based baselines perform bad
○ CL3: adding traces using gap-to-optimum metrics

Effects of design choices

● Compare to “Robustifying” baseline:
○ Robustifying baseline: train another policy to improve current model by generating adversarial

network traces in ABR environments
○ BO w/ Robustifying reward: search for configurations that maximize the gap between current

model and optimal reward, penalized by bandwidth non-smoothness at different weights

Effects of design choices

● Compare to efficiency of other search approaches:
○ Random search: uniform sample from environment configuration space
○ Grid search: search and update each configuration one by one

● BO searches for much fewer steps and able to find high gap-to-baseline
values compared to other baselines

Thanks!

