Language-Directed Hardware Design
for Network Performance Monitoring

Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan,
Prateesh Goyal, Venkat Arun, Mohammad Alizadeh, Vimal
Jeyakumar, and Changhoon Kim

NI = o g
SPSSS Ll [T BAREFOCIT

Example: Who caused a microburst?

7
Queue build-up deep in
the network

x End-to-end probes

x Sampling
2 Counters & Sketches

? Mirror packets
O

7G

[0}
&USG @@ udp

3G

1G

20.00 20.02 20.04 20.06 20.08 20.1
Time (s)

Per-pkt info: challenging in software
6.4Tbit/s switch: Need 100M recs/s
COTS: 100K-1M recs/s/core

Presenter Notes
Presentation Notes
traditional switch mechanisms like sampling [7, 21], mirror- ing [8, 42, 65], and counting [34, 49] are quite restrictive. None of these mechanisms provides relevant performance data, like queueing delays.

Switches should be first-class citizens in
performance monitoring.

Why monitor from switches?

* Already see the queues & concurrent connections
* Infeasible to stream all the data out for external processing

« Can we filter and aggregate performance on switches directly?

We want to build “future-proof” hardware:

Language-directed hardware design

Performance monitoring use cases

~~

Expressive query language

~~

Line-rate switch hardware primitives

Contributions

* Marple, a performance query language

* Line-rate switch hardware design
» Aggregation: Programmable key-value store

* Query compiler

Presenter Notes
Presentation Notes
Performance query language. Marple uses familiar functional constructs like map, filter, groupby and zip f
Language directed hardware design

Marple programs

Switch programs

To collection
servers

OE&E

Programmable switches
with the key-value store

Marple: Performance Query Language

Presenter Notes
Presentation Notes
Talk about Marple the performance query language
More specifically, what primitives Marple provides to a user

To explain how users can write queries with Marple, I would also refer to a couple of telemetry use cases in networking

Both interesting to see what constructs an expressive query language in networking should have
And also to understand what are some of the telemetry queries network operators would be interested in

To express telemetry queries

A high-level language
e.g. Marple

Hardware supports the

language

Presenter Notes
Presentation Notes
Recap: goal of the project:​
- first: have an expressive high-level language to express telemetry queries​
- then: have hardware to support the language

Presenter Notes
Presentation Notes
When network operators write queries using Marple, assume there is a single stream of packets
and the compiler partitions the query across the network and executes each part on individual switches

pktstream

Stream: For each packet at each queue,
S:= (switch, qid, hdrs, uid, tin, tout, gsize)

Location Packet Queue entry and Queue depth
identification exittimestamps seen by packet

Presenter Notes
Presentation Notes
For Marple, an important data structure is a packet stream,
which is both the input and output to Marple queries
A packet stream is an ordered list of tuples,
Each tuple contains metadata and performance data for a packet

Tuple: (switch, qid, hdrs, uid, tin, tout, qsize)
Switch: which switch
Qid: which queue
Hdrs: the regular packet headers (Ethernet, IP, TCP, etc)
Uid: packet id
Tin: enqueue timestamp
Tout: dequeue timestamp
Qsize: queue length when a packet is enqueued

pktstream

Stream: For each packet at each queue,

S:= (switch, qid, hdrs, uid, tin, tout, gsize)

~~

Familiar functional operators

14

Presenter Notes
Presentation Notes
Marple provides four constructs to operate on pktstreams
They are ...
will learn how to use the four constructs through a couple of examples

Filter: restrict packet data of interest

result = Filter(pktstream, qid == Q and switch == S and
tout — tin > 1 ms)

Tracking packets that experience high queueing latencies (>1ms) at
switch S, queue Q

15

Presenter Notes
Presentation Notes
tracks packets that experience high queueing latencies at a specific queue (Q) and switch (S)
Filter takes in a pktstream and a predicate that describes what packets we should focus on
�In this case:

The result is also a pktstream

Filter: restrict packet data of interest

result = Filter(pktstream, qid == Q and switch == S and
tout — tin > 1 ms)

R output = Tilter(R_1nput, predicate)

Presenter Notes
Presentation Notes
R_input is some stream containing performance metadata, and the predicate may involve packet headers, performance metadata, or both
R_output is also a stream

Map: compute stateless functions over packets

result = map(pktstream, [tin/epoch_size], [epoch])

Rounding packet timestamps to an “epoch”

Presenter Notes
Presentation Notes
Round packet timestamps to an epoch
Each epoch of is size epoch_size, which should be pre-defined

The map operator evaluates the expression tin/epoch_size and produces a new field epoch.
The result stream would have one more field

Map: compute stateless functions over packets

result = map(pktstream, [tin/epoch_size], [epoch])

R_output = map(R_input, [expression], [field])

Presenter Notes
Presentation Notes
The general form of map takes three inputs:
A packet stream
a list of expressions over fields in the input stream
a list of new fields that map is going to add to the output stream.

Note that in our previous example, we only had one pair of expression+new field.
We could potentially have a list of them

Groupby: aggregate statefully over multiple packets

result = groupby(pktstream, [5tuple], count)

def count([num],[]):
num = num+1

Counting packets belonging to each transport-level flow (i.e. 5-tuple)

Presenter Notes
Presentation Notes
Next: groupby, which enables us to aggregate statefully over multiple packets

Example: counts the number of packets belonging to each transport-level flow
A transport-level flow is identified by the 5-tuple, which includes src & dst address, src & dst port and protocol id

Here, groupby (1) first partitions the incoming pktstream into substreams based on the transport 5-tuple,
and (2) then applies the aggregation function count to count the number of tuples in each substream.

I also had a count function written below. We are keeping a state num and num tracks the number of packets. It may look a bit uninteresting here, but in the next example, we would see what inputs the aggregation function takes and how are they interesting.

Groupby: aggregate statefully over multiple packets

result = groupby(pktstream, [5tuple, switch], ewma)

def ewma([avg], [tin, tout]):
avg = ((1-alpha)*avg) + (alpha*(tout-tin))

Maintaining an exponentially weighted moving average (EWMA) of

gueueing latencies
Tracking latency spikes for each connection

Presenter Notes
Presentation Notes
The example also illustrates how groupby can be helpful. The point here is that Marple allows users to write order-dependent aggregation functions over the tuples of each substream.

This example here maintains an ewma of queueing latencies in order to track …
Order of packets is important here for calculating ewma because packets closer in time would have a higher weights

If we look at the ewma function, it takes in two inputs, avg is the state we maintain and [tin, tout] is the field we need for computation from new packets

There are some other streaming languages out there that treats a packet stream as an unordered list. Marple is special in this regard as it allows function to be applied to packets in the order they are processed. This capability also makes Marple more expressive and applicable to cases like ewma calculation.

--
Here the aggregation function ewma evolves an EWMA avg using the current value of avg and incoming packet timestamps. Unlike the previous count example, the EWMA aggregation function depends on the order of packets being processed.

Unlike some other streaming languages, which treats unordered list, Marple provides an ordered stream that each packet is aggregated in the order that they dequeue
Function is applied to packets in the order they depart the queue

Groupby: aggregate statefully over multiple packets

result = groupby(pktstream, [5tuple], count)

result = groupby(pktstream, [5tuple, switch], ewma)

R_output= groupby(R_input, [aggFields], fun)

Presenter Notes
Presentation Notes

In gerenal, groupby takes this form.
the aggregation function fun operates over tuples sharing attributes in a list aggFields of headers and performance metadata

The aggregation function fun is written in an imperative form, with two arguments: a list of state variables and a list of relevant incoming tuple fields

Emit()

Tracking the size distribution of flowlets

Presenter Notes
Presentation Notes
Next we will dive deeper into an use case to explain a function called emit. We will also come back to this example again later to explain something else.

The example is about tracking the size distribution of flowlets.
Flowlets: bursts of packets from the same 5-tuple separated by more than a fixed amount of time delta.

The yellow line is a time line, so it represents the progression of time.
Each circle represents the enqueue timestamp of a packet from a transport-level flow.

Emit()

Tracking the size distribution of flowlets

Presenter Notes
Presentation Notes
Then we may want to group the packets this way, into 4 flowlets.
Flowlet is a rather artificical concept, it depends on the delta i..e how far away packets need to be before we consider them as two flowlets.

So the goal here is to track their size distribution

Emit()

Tracking the size distribution of flowlets

fl_track = groupby(pktstream, [5tuple], fl_detect);

def fl_detect([last_time, size], [tin]):
if (tin - last_time > delta):
emit() #stream out [last_time, size]
size =1
else:
Size = size + 1
last_time = tin

Presenter Notes
Presentation Notes
The first step is to group packet stream into flows defined by 5 tuple
And for each flow, detect how many flowlets there are

The function fl_detect detects new flowlets using the last time a packet from the same flow was seen. If the difference between my enqueue time and last_time is larger than delta, I consider myself to be a new flowlet and thus "flush out" the two states last_time and size by using an emit().
Otherwise, I increment size for this flowlet and update last_time to be my enqueue time.

In this case, in fl_track (also a stream), 7 fields:
5 tuples that it is grouped based on
And the two states last_time and size

--
Not 100% sure if no emit() – my understanding is that the two states will not go into the output stream but we still retrieve the current state values from the collection servers

In this case, the flowlet size from fl_track is only streamed out to other operators upon seeing the first packet of a new flowlet.

Chaining together multiple queries

* All Marple constructs have streams as their inputs and outputs
* Write queries that take results of previous queries as inputs

Presenter Notes
Presentation Notes
The constructs like map and groupby may not seem to be that useful by themselves
But marple can chain together multiple of them to express more complex queries

This is possible because all marple constructs have streams as their inputs and outputs
users can write queries that take in the results of previous queries as inputs.

A stream of tuples flows from one query to the next, and each query may add or filter out information from the incoming tuple, or even drop the tuple entirely.

Four constructs by themselves are not that useful
Chaining themselves

Chaining together multiple queries

Tracking the size distribution of flowlets

fl_track = groupby(pktstream, [5tuple], fl_detect);
fl_bkts = map(fl_track, [size/16], [bucket]);
fl_hist = groupby(fl_bkts, [bucket], count);

Presenter Notes
Presentation Notes
Now we come back to this example of tracking the size distribution of flowlets and go through them with a dummy example packet stream

We need to chain together three queries here

The map fl_bkts bins the flowlet size emitted by fl_track into a bucket index, which is used to count the number of flowlets in the corresponding bucket in fl_hist.

Chaining together multiple queries

fl_track = groupby(pktstream, [5tuple], fl _detect);
fl_bkts = map(fl_track, [size/16], [bucket]);
fl_hist = groupby(fl_bkts, [bucket], count);

s ot seport—|esport—provcei4 [|
1 2 0 0 0 2

5 1 1 2 0 0

1 2 0 0 0 3

Presenter Notes
Presentation Notes
Let's say we start with this raw packet stream
Many fields including src_addr, ….
More than three rows
(dummy numbers)

Chaining together multiple queries

fl_track = groupby(pktstream, [5tuple], fl_detect);
fl_bkts = map(fl_track, [size/16], [bucket]);
fl_hist = groupby(fl_bkts, [bucket], count);

s | ot sport | esport | provocl 4 stsme ke
1 2 0 0 0 10 11

5 1 1 2 0 22 30

Presenter Notes
Presentation Notes
We've seen the first query before.
Here, we aggregate packets by 5 tuple and track the number of flowlets in each 5tuple
Fl_track will look like this:
(1) packets are now grouped by 5tuple
(2) add two fields for the two states we track – last_time and size
Size indicates the number of flowlets we are interested in

Chaining together multiple queries

fl_track = groupby(pktstream, [5tuple], fl_detect);
fl_bkts = map(fl_track, [size/16], [bucket]);
fl_hist = groupby(fl_bkts, [bucket], count);

| ot srport | dsport | proocl 4 s ime L see | bucker
1 2 0 0 0 10 11 0

5 1 1 2 0 22 30 1

Presenter Notes
Presentation Notes
The second query takes fl_track as an input stream
It adds a new field bucket to the stream by taking size divided by 16

The overall goal is to have a histogram for the flowlet size distribution
So here, we are making things a little bit more coarse-grained by grouping adjacent sizes into buckets

Discussion: given fl_bkts, how should fl_hist
look like?

fl_track = groupby(pktstream, [5tuple], fl_detect);
fl_bkts = map(fl_track, [size/16], [bucket]);
fl_hist = groupby(fl_bkts, [bucket], count);

| ot srport | dsport | proocl 4 s ime L see | bucker
11

1 2 0 0 0 10 0
5 1 1 2 0 22 30 1
1 3 0 4 0 10 6 0
3 2 1 3 0 26 26 1
1 1 2 8 0 10 13 1
2 5 1 1 1 35 41 2

Presenter Notes
Presentation Notes
Discussion time

Added 4 more rows to make it more interesting

Ask people to share:
How many rows there are?
How many columns there are?
What are the rows?

Chaining together multiple queries

f
f
f

_track = groupby(pktstream, [5tuple], fl_detect);
_bkts = map(fl_track, [size/16], [bucket]);
_hist = groupby(fl_bkts, [bucket], count);

Presenter Notes
Presentation Notes
Grouping by bucket and counting the number of tuples in each bucket
People should easily plot a histogram with fl_hist and understand the size distribution of flowlest

Zip: join results across queries

Example: detecting TCP incast
TCP incast: fan-in of packets from many connections into a single queue

1. The number of active flows in a queue over a short interval of time is high
2. The queue occupancy is large

Presenter Notes
Presentation Notes
Chaining queries together makes Marple pretty powerful
The last piece to the puzzle is zip, which is another powerful construct that makes Marple expressive

a zip operator “joins” the results of two queries to check whether two conditions hold simultaneously.

We will consider the example of detecting TCP incast, which is signaled by the fan-in of packets from many connections into a single queue

A TCP incast has two important characteristics
Queue grows a lot -> (2) the queue occupancy is large.
Packets come from different active flows -> (1) the number of active flows in a queue over a short interval of time is high

Zip: join results across queries
Example: detecting TCP incast

1. Compute the number of active flows over the current epoch
R1 = map(pktstream, [tin/epoch_size], [epoch]);

R2 = groupby(R1, [5tuple, epoch], new_flow);

R3 = groupby(R2, [epoch], count);

2. Combine with the queue occupancy information in the original pktstream

R4 = zip(R3, pktstream);
result = filter(R4, gsize > 100 and count > 25);

Presenter Notes
Presentation Notes
Will quickly go through this example without too much detail

First step: compute the number of active flows …
R1 divide packets into epochs
R2: in each epoch for each flow/5tuple, pick the first packet of every new flow
R3:in each epoch, count number of packets, which is equal to the number of new flows

Second step: we combine R3 with the original pktstream and filter packets that have both long queue and high number of active flows

Note that zip is a special kind of stream join where the result can be computed without having to synchronize the two streams
As long as tuples of both streams originate from the same pktstream, Marple can figure things out

The result of a zip operation over two input streams is a single stream containing tuples that are a concatenation of all the fields in the two streams, whenever both input streams contain valid tuples processed from the same original packet tuple.

The result of the zip can be processed like any other stream: the filter in the result query checks the two incast conditions above.

What Marple cannot do

Example

* EWMA over some packet field across all packets seen anywhere in the entire
network, while processing packets in the order of their tout values.

* Challenges:
* Coordinate between switches

* OR stream all packets to a central location.

Presenter Notes
Presentation Notes
We have talked about how powerful Marple is, and it is also important to note what Marple cannot do

Consider this example of calculating …
Ewma is sensitive to the packet order, if we want to do it network-wide, we have to either:
Coordinate between switches, this means that if the packets we are interested in come from two switches, we need to constantly communicate between the two switches to make sure that we get the packet order right, which is not realistic
Or we can stream all packets to a central location and sort there and then compute, but this can be expensive too

What Marple cannot do

* Aggregations that need to process multiple packets at multiple switches in
order of their tout values.

Presenter Notes
Presentation Notes
In summary, Marple cannot do aggregations that ...

What Marple can do

1. Operate independently on each switch
2. Operate independently on each packet

3. Associative and commutative

Presenter Notes
Presentation Notes
In this last slide of the section, I want to summarize what queries Marple can process:

(1) such that we can naturally partition queries by switch (e.g., a per-flow EWMA of queueing latencies on a particular switch), or

(2) such that we can have the packet carry the aggregated state to the next switch on its path (e.g., a rolling average link utilization seen by the packet along its path), or

(3) in which case independent switch-local results can be combined in any order to produce a correct overall result
(e.g., a count of how many times packets from a flow appeared throughout the network. In this case, we rely on the programmer to annotate the aggregation function with the assoc and comm keywords.)

Hardware Implementation

Architecture of a PISA switch

PISA: Protocol Independent Switch Architecture

User Programs @ - T,
it How:yoRmost Intel® Tofino™: 6.5Tb/s, 16nm

process packets” _ (Dec'2016)

Multiple Match-Action Units

for header transformation
(VLIW Instructions, ALUs,
SRAM+TCAMSs, counters, meters, ...)

Packet Header fields to
‘Registers’
(PHV: Packet Header Vector)

/

2 L r,/ \
—1_5: |- r - _—
<« B < —:
:: ﬁ u 4 —
—3 E § < —_—
—> E 9 an —
—_— 0 —
—> ——>
—3 £ —
—> a - a > —>
JR— > N <3

\ \& - = ¥

Ingress stages (pre-switching) Egress stages (post-switching)
Any header
anywhere
(intel L LL S

The Banzai Machine

The architecture of a programmable switch
Ingress pipeline

Match-action table

Match-action table

A

Parser ' — —
Primitives
Bits @ Headers Match)| - |Action —)»D Headers Headers :IIlII Headers
—_— —- | —
— —| L _)D — [N N] — —
@ 6 —|| =" — —| o | ==
_— — w —»D _ _ I
— / — L0 |— —| Tm |—
-+D
N
& N i)
The Banzai machine model
Atom] | State Body Atomf | State Body
Packet
Headers Atomjl | State Body Packet Atom] | State Body Packet
\ Headers \I—\Ieaders
Atomjl | State Body Atom] | State Body

Physical Stage 1
Figure 1: The Banzai machine model and its relationship to programmable switch architectures.

Queues

Egress pipeline

Match-action table

I | | Metehack

Headers

]

Match-action table

'

Transmit

[T

Physical Stage 2

Atomj | State Body
Atomfl | State Body
Atomj | State Body

Physical Stage n

X

if (counter < 99)
counter++;

else

counter = 0;

constant

R

Adder

Subtractor

Add Result

Sub Result

choice

X

(a) Circuit for an atom that
can add or subtract a constant
from a state variable.

Figure 2: Atoms and atom templates

bit choice = ?77;
int constant = ?77;
if (choice) ¢

X = x + constant;
} else {

X = X - constant;

}

(b) Circuit representation as an atom tem-
plate.

In practice, atom templates will
be designed by an ASIC
engineer and exposed as a
machine’s instruction set

Implementing Marple on switches

out, gsize)

Switch telemetry
[INT SOSR’15]

\—Y—I

Stateless match-action rules
[RMT SIGCOMM’13]

Implementing Marple on switches

out, gsize)

Switch telemetry
[INT SOSR’15]

\—Y—I

Stateless match-action rules
[RMT SIGCOMM’13]

The GROUPBY problem

* GROUPBY is the only language primitive that required a state to be
stored. It wants a Key-Value store.

* Each stage in PISA contained only a few registers, TCAMs, and
memory arrays (SRAMs).

The GROUPBY problem

* Example Application: Exponentially Weighted Moving Average
(EWMA)

* Avg = a - (New Value) + (1 — a) - (Previous Avg)

* Older values are exponentially less important

* Moving Average without requiring to keep track of entire window.

The GROUPBY problem

* EWMA of queueing latency of a flow.

* S:= (switch, hdrs, uid, gid, tin, tout, gsize)
* Key:= [hdrs (“TCP”, SrcIP, SrcPort, DstlIP, DstPort), switch]
* NewValue:= tout - tin

* The key space is quite large. On-chip SRAM won’t be able to store all
the information, and off-chip storage will not achieve line-rate.

e Solution: Cache

Caching:
the illusion of fast and large memory

Caching

S |

On-chip cache
(SRAM)

Key Value

Off-chip backing
store (DRAM)

Key | Value

51

Caching
g On-chip cache
(SRAM)

Key Value

Off-chip backing
store (DRAM)

Key | Value

Read value for
S5-tuple key K

Modify value
using ewma

Write back
updated value

Caching
g On-chip cache
(SRAM)

Value) Req. key K

Off-chip backing
store (DRAM)

Read value for
S5-tuple key K

\

Resp. Vback

Caching
| & On-chip cache

Value) Req. key K

Off-chip backing
store (DRAM)

Read value for
S-tuple key K

\

Resp. Viao

Modify and write must wait for DRAM.

Non-deterministic latencies stall packet pipeline.

Instead, we treat cache misses as
packets from new flows.

Cache misses as new keys ¢ o backing
_QN _ On-chip cache store (DRAM) |
(SRAM) Key | Value

Read value for
key K

Cache misses as new Keys o his backing =
g On-chip cache store (DRAM)
(SRAM)

Value) Evict K’V

cache

Read value for
key K

Cache misses as new keys ¢ o backing

. On-chip cache store (DRAM)
= (SRAM)

Value\ Evict K,V

cache

Read value for
key K

59

Cache misses as new Keys o his backing =
g On-chip cache store (DRAM)
(SRAM)

Value) Evict K’V

cache

__,————,——"—:::?j:;
. 9

Nothing to
wait for.

Read value for
key K

Packet processing doesn’t wait for DRAM.

Retain 1 pkt/ns processing rate! (8

The Merge operation
\/cache Vback

(—‘—\ l_‘_\
merge(g(lq;]), g([pi]))

= g(|lp1,...,pn,q1,...,qgm|)
e

Fold over the entire packet sequence

 Example: if g Is a counter, merge is just addition!

Merging Case 1: Associative

* The operation with each new incoming value is a simple associative
operation.

* Example: Counting packets in a flow. Finding maximum queueing time
(tout-tin)

* Trivial: Just apply the same function upon eviction.

Merging Case 2: Linear-in-state

* Consider the EWMA again:
Avg = a - (New Value) + (1 — a) - (Previous Avg)

 Denote the stored EWMA value as s. Assume when we initialize
EWMA, we set its value to sy (which could just simply be 0).

Scache ' . Sbacking
Marple’'s design
4 Backing stare (DRAW
(
Cache (SRAM) Key | Value

Miss Initialize (Kev Valug
key -
Hit Update - evicted
§) key \. /)

-

Merging Case 2: Linear-in-state

* Question: How to merge EWMA cache value with EWMA value in
DRAM?

« Avg = a - (New Value) + (1 — a) - (Previous Avg)
* Scache = ewma(py ...pj)

* Shacking = ewma(pj—l Do)
* Want ewma(py ... po)

Scache ' . Sbacking
Marple’'s design
4 Backing stare (DRAW
(
Cache (SRAM) Key | Value

Miss Initialize (Kev Valug
key -
Hit Update - evicted
§) key \. /)

-

Merging Case: Linear-in-state

* Spew = Scache T (1 — a) - (Sbacking — Sp)

* Need the value of (1 — a)" (or just N) to calculate the merged value

Scache . . Sbacking
Marple’'s design
4 Backing re (DRAm
(
Cache (SRAM) Key L Valuel

Miss = Initialize _ (Key\| Value)
key -
Hit Update - evicted
§) key \. /)

-

Merging Case: Linear-in-state

* The state update can be expressed in the form of
§S=A(p)-S+B(p)

Where p is header and performance data of last k packets.
A(p), B(p) are functions of limited packet history.
k is a integer defined at compile time (and usually small).

* In general, all linear-in-state folding functions only need O(n) auxiliary
state to merge them.

* All aggregation functions that maintain a linear auxiliary state is
mergeable.

Presenter Notes
Presentation Notes
Small because the switch will need to carry a packet history of k packets.

Microbursts: Linear-in-state!

def bursty([last _time, nbursts], [tin]):
iIf tin - last _time > 800 ms:
nbursts = nbursts + 1
last time = tiIn

result = groupby(S, 5tuple, bursty)

nbursts: S = A * S + B, where
A=1
B = {1, ifcurrent pkt within time gap from last;
O otherwise}

Other linear-in-state queries

« Counting successive TCP packets that are out of order
 Histogram of flowlet sizes
« Counting number of timeouts in a TCP connection

e ... 7110 example queries in our paper

Merging Case: Non-mergeable

* Remaining non-mergeable cases
* Queries with aggregation functions that are neither associative nor linear-in-state.

 GROUPBY aggregation functions with emit () — This will emit state value, which
requires an instant merge.

* In some cases, emit () can be avoided by rewriting the query.

* Solution: Move to Domino, which then compiles to a Banzai
machine model, which gets mapped to the target platform.

* i.e. Compile to the register, ALU and sALU level of the target
platform, and try to fit it into the pipeline. Key space will be
limited.

Hardware Feasibility

* The stateful hardware can be broken down into five components.
* On-chip cache: A hash table implemented with SRAM.
* Off-chip backing store: A scale-out key-value store, such as Redis.
* Maintaining packet history — Store in pipeline.
* Performing Linear-in-state calculations: Multiply-Accumulate instruction.
* Handling not linear-in-state functions: Domino Atom.

Query Compilation

Theoretical results

Given:
* A user-defined fold function f
* A sequence of packets p

* Want to create an "iterated function" to store in the backing, with:

fo(s) = 1(s, p)

For any backing state s

* The cache stores fp for the current sequence, and that becomes the
"merge" function once evicted.

THEOREM 3.1. Every aggregation function has a corresponding
merge function that uses O(n2") auxiliary bits.

For any f, we can store fp as the answer for any possible s in the backing
store

There are 2" such s and the answers have size n.

78

THEOREM 3.2. If an aggregation function is either linear-in-
state or associative, it has a merge function that uses O(n) bits of
auxiliary state.

Proof:
 |f associative, O auxiliary state.

 |f linear-in-state, then f looks like A(h)*s + B(h), where A and B use only
bounded history

fo(s, {p1...pk}) can be written A"™s + C(p1...pk)

A' = A(pk)...A(p1)

C = B(pk) + A*B(pk-1)+ ... A*...*A*B(p1)

So, the switch can just store/update A' and C, which each have

size linear in n.

79

Running example

def oos_count([count, lastseq], [tcpseq, payload_len]):
if lastseq != tcpseq:
count = count + 1
emit()
lastseq = tcpseq + payload. len

tcps = filter{pktstream, proto == TCP
and (switch == 51 or switch == 52));
tslots = map(pktstream, [tin/epoch_size], [epoch]):
joined = zip(tcps, tslots);
Dos = groupby(joined,
[5tuple, switch, epoch],
oos_count);

Network-wide to switch programs

* Goal: take a query about an abstract stream and output a program for
each switch in the network

* Solution: Syntactically check each filter predicate to determine which
switches should have each function.

Network-wide to switch programs

def oos_count{[count, lastseq], [tcpseq, payload len]):

if lastseq != tcpseq:
count = count + 1
emit()
lastseq = tcpseq + payload_len

tcps = filter(pktstream, proto == TCP

and (switch == 51 or switch == 52));
tslots = map(pktstream, [tin/epoch_size], [epoch]):
joined = zip(tcps, tslots);
005 = groupby(joined,

[Stuple, switch, epoch],
005 _count);

o
()

group

(a)

(o=
(&

(b)

Permitted queries

* Operate independently on each switch:
* Check AST of query

* Operate independently per packet:
* Check that groubpy aggregates by uid

* Operations are associative and commutative
° Programmer must annotate

Checking if gueries are per-switch

* Propagate whether a stream is switch-partitioned through the query:
* Base packetstream is not partitioned.

* Filter and zip outputs are switch-partitioned based on syntactic check
* Map preserves partition

* Groupby is switch-partitioned if it aggregates by switch.

Checking if queries are per-switch

def oos_count{[count, lastseq], [tcpseq, payload len]):
if lastseq != tcpseq:
count = count + 1 AP

emit()
lastseq = tcpseq + payload_len e @

tcps = filter(pktstream, proto == TCP @ @ @ @
and (switch == 51 or switch == 52));

tslots = map(pktstream, [tin/epoch_size], [epoch]):

joined = zip(tcps, tslots); @ @

005 = groupby(joined,

[Stuple, switch, epoch],
oos_count): (a) (c)

Creating pipeline configuration

» After the previous checks, Marple has per-switch programs to place
into the pipeline

* Must care to avoid read/write dependencies; place AST in reverse
order

group

(a)

Per-switch AST to code

* The hard query to compile is groupby
* Filter, zip is just checking predicate and setting a bit in the packet
* Map adds a new header field with the resulting expression

* Transform GroupBy aggregation functions into a series of if
statements that fit into a P4 action, with a register storing variables

* Use program analysis algorithm from the 70s

* Domino can directly handle the series of if-statements.

How to detect linear-in-state functions

 Very difficult to detect all LIS functions
* Enough to have syntax checks, but not algebraic rewriting

 Suffices to check that all variables (state in register, or headers) are
linear in state

* All header variables are clearly LIS

Step 1: History of variables

* For each variable, check how many packets it depends on
* Headers of the current packet are 1

* State replaced per packet are 2

* Counters that contain every packet are infinite

Step 1: History of variables

* Hard to check whether a state (register) variable is LIS

L
7.
3
4
3

iR

10:
11:
12:
13:
14:
15:
16:
17
18:
19:

20

hist = {state = {true: max_bound} } = Init, hist. for all state vars.
2: function COMPUTEHISTORY(fun)
while hist is still changing do = Run to fixed point.
hist « {)
ctx true = Set up outermost context.
ctxHist < 0 > History value of ctx.

for stmt in fun do
if stmt == state = expr then
hist[state][ctx] < GETHIST(ctx, expr, ctxHist)
else if stmt == 1if predicate then
save context info (restore on branch exit)
newCix + cix and predicate
ctxHist +~ GETHIST(ctx, newCtx, ctxHist)
ctx « newCtx
end if
end for
for ctx, var in hist do > Make history one pkt older.
hist[var][ctx] +— min(hist[var][ctx] + 1, max_bound)
end for

end while

21: end function

- function GETHIST(ctx, ast. ctxHist)

23: for x1 € LEAFNODES(ast) do
24: hi = hist[x1][ctx]

25: end for

26: return max(hl,, hn, ctxHist)
27: end function

Step 1: History of variables

* Assume state variables have infinite history for safety

* Check each assighment:

* |f a state variable is assigned to an expression with finite history, it has finite
history
* Check branches for the maximum history of:

* Predicate
e Branch 1
e Branch 2

e Continue until a fixpoint is reached (propagates constant histories as far as
possible)

* Each loop, increment all histories (until ficxpoint)

Step 2: History of all variables

* If all state variables have finite history, then the update is LIS, since
we can just send a finite packet history

* If some are infinite, then we have to check if their updates are linear-
in-state (for example, the EWMA example)

* Done by simply checking syntactically if assighnment looks like

S:=AS+8B

 Where A, B are expressions with finite history (as computed before)

* Branching predicates cannot have infinite history

Step 3: Determine Auxiliary State

* Once we have checked that State variables are LIS, we need to
determine what is stored in the registers. Each state variable gets:
* A packet counter c
* An entry log (logs from insertion)
* An exit log (logs most recent packets)
* Arunning product S

* Once c is bigger than the LIS bound, we start multiplying S by the LIS
matrix A for every update to the variable

* On eviction, send S and the exit log so that the store can merge

Question: How do you store the exit log

* Must store the previous k packets so that the backing store can
compute "C" to merge

Maintaining packet history

® © ¢
EOT}p;te Pl.: r(?;d(gix)) Pk = read(idx) Compute A(P1...Pk)
ash iax ‘é’l:': 'Plx' ur write(idx, Cur) And B(P1...Pk), and do

update.

Cur = hdrs \

Move all stored packets down the line

Summary

rQuery is scalable

7 Y\ YES | Step 3: Compute

Aggregation Step 1. variable updates

:‘:u;d c;mn Foc:r:gélrtlesft:imy irsasin atate? _required for merge
; : (Finite history variables
(in Marple) variable

are trivially linear in state)

\.

]

Query is not scalabIeJ

Evaluation:
|s processing the evictions feasible?

Eviction processing Off-chip backing &
| a_ On-chip cache store (DRAM) |
(SRAM)

Value) Evict KV’

cache

Eviction processing at backing store

* Trace-based evaluation:
« “Core14”, “Core16”: Core router traces from CAIDA (2014, 16)
« “DC”: University data center trace from [Benson et al. IMC "10]
« Each has ~100M packets

* Query aggregates by 5-tuple (key)

« Show results for key+value size of 256 bits

« 8-way set-associative LRU cache eviction policy

* Eviction ratio: % of incoming pkts that result in a cache eviction

Eviction ratio vs. Cache size

12 |
i Core16 &
10 Core14 @
R DC &

% Evicted
O NN A OO O
|

- = = = = =
16 17 18 19 20 21

log_2(Cache Slots)

100

Eviction ratio vs. Cache size

% Evicted

12

|
I
I
—u—— b

Core16 —&-

Corel14 @
DC B

— —
16 17 20 21
log_2(Cache Slots)

218 keys == 64 Mbits
4% pkt eviction ratio

25X reduction from
processing each pkt

101

Eviction ratio = Eviction rate

» Consider 64-port X 100-Gbit/s switch 12 16 A

* Memory: 256 Mbits
* 7.5% area

% Evicted

B = u = % =

o 16 17 18 19 20 2
 Eviction rate: 8M records/s log_2(Cache Slots)

« ~ 32 cores

Debugging Microbursts

def burst_stats([last_time, nburst, time],

if tin - last_time > 800000:
nbursts++;
emit();
else:
time = time + tin - last_time;
pkts = pkts + 1;
last_time = tin;

result = groupby(R1, 5tuple, burst_stats)

[pkts, tin])-

Latency (s)

10 20 30 40 50 60 70 80 90

Time (s)

0 10 20 30 40 50 60 70 80 90
Time (s)

103

Presenter Notes
Presentation Notes
Queue depth - measure the queue depth - conclude requests latency due to queue build up periodic spikes in queue length

CDF of flowlet
sizes for different
flowlet thresholds.

CDF

-

e delta = 50ms
Tid delta = 100ms —-—-- —

M.
- -

]
.
.....
¥
""""""
|||||
Wt

'..-—‘-"
- o

delta = 20ms - - =+ —

dleltlal= Sopms ——

1

10

100 1000 10000
Flowlet size (packets)

104

Presenter Notes
Presentation Notes
Flow between two endpoints within a duration how many packets flow.
We can give fine grained detail like flow let size using this system.

�
Delta - flow let size
We can give fine grained detail like flow let size using this system.

See more in the paper...

* More performance query examples
* Query compilation algorithms
« Evaluating hardware resources for stateful computations

* Implementation & end-to-end walkthroughs on mininet

Further work: Sonata

* Marple focuses on executing queries in the data plane
* The Key-Value store deals with cache sizing

« Sonata adds a central query controller/stream processor that
allows for more complex queries

« Sonata does "what it can" on the switch and forwards
iIntermediate results to the stream processor

« Similar to Marple, the main issue is the "join" operation that
joins two streams.

Sonata

Stream
Processor

Runtime

Switch
Configs

Packets In Packets Out

107

Sonata Queries

1 packetStream(W)

2 .filter(p => p.tcp.flags == 2)

3 .map(p => (p.dIP, 1))

4 .reduce(keys=(dIP,), f=sum)

5 .filter ((dIP, count) => count > Th)

Query 1: Detect Newly Opened TCP Connections.

108

Sonata Queries

-
= W =] S B e B Pl e

——
i P

packetStream

.filter(p => p.proto == TCP)

.map(p => (p.dIP,p.sIP,p.tcp.sPort))
.distinct ()

.map({dIP,sIP,sPort) =>(dIP,1))
.reduce (keys=(dIP,), f=sum)
.join(keys=(dIP,), packetStream

.filter(p => p.proto == TCP)

.map(p => (p.dIP,p.pktlen))

.reduce{ keys=(dIP,), f=sum)

.filter ({(dIP, bytes) => bytes > Thl))

.map ({dIP, (byte,con)) => (dIP, (con/byte))
.filter ((dIP, con/byte) => (con/byte > Th2)

Query 2: Detect Slowloris Attacks.

109

Switches: Similar layout

Pkt

PHV,

Parser

1

Reduce @
-

rd

o,

o
s

*Register| .

Emit

I PHV, .

*Deparserf

Stage 0

Stage 1

Stage 3

Pktout

110

Problem: too much traffic

* The stream processor cannot handle all events from all

individual keys.

 Solution: make queries more general if there are too many keys
 Called refinement; incrementally refine until manageable

packetStream (W)

.Filter{(p => p.tcp.flags == 2)
.map(p => (p.dIP, 1))

.reduce (keys=(dIP,), f=sum)

.filter ((dIP, count) => count > Th)

Query 1: Detect Newly Opened TCP Connections.

.

___-—

i Fllter |_._f Map Map Reduce
\ dIP,’S BN d|m& ! diP,1 sum
rip1=16

	Language-Directed Hardware Design�for Network Performance Monitoring
	Example: Who caused a microburst?
	Slide Number 3
	Why monitor from switches?
	Slide Number 5
	Slide Number 6
	Contributions
	Slide Number 8
	Marple: Performance Query Language
	Slide Number 10
	Slide Number 11
	pktstream
	pktstream
	Filter: restrict packet data of interest
	Filter: restrict packet data of interest
	Map: compute stateless functions over packets
	Map: compute stateless functions over packets
	Groupby: aggregate statefully over multiple packets
	Groupby: aggregate statefully over multiple packets

	Groupby: aggregate statefully over multiple packets

	Emit()
	Emit()
	Emit()
	Chaining together multiple queries
	Chaining together multiple queries
	Chaining together multiple queries
	Chaining together multiple queries
	Chaining together multiple queries
	Discussion: given fl_bkts, how should fl_hist look like?
	Chaining together multiple queries
	Zip: join results across queries
	Zip: join results across queries
	What Marple cannot do
	What Marple cannot do
	What Marple can do
	Hardware Implementation
	Architecture of a PISA switch
	The Banzai Machine
	Implementing Marple on switches
	Implementing Marple on switches
	The GROUPBY problem
	The GROUPBY problem
	The GROUPBY problem
	Slide Number 50
	Caching
	Caching
	Caching
	Caching
	Caching
	Slide Number 56
	Cache misses as new keys
	Cache misses as new keys
	Cache misses as new keys
	Cache misses as new keys
	Cache misses as new keys
	The Merge operation
	Merging Case 1: Associative
	Merging Case 2: Linear-in-state
	Merging Case 2: Linear-in-state
	Merging Case: Linear-in-state
	Merging Case: Linear-in-state
	Microbursts: Linear-in-state!
	Other linear-in-state queries
	Merging Case: Non-mergeable
	Hardware Feasibility
	Query Compilation
	Theoretical results
	Slide Number 78
	Slide Number 79
	Running example
	Network-wide to switch programs

	Slide Number 82
	Permitted queries
	Checking if queries are per-switch
	Checking if queries are per-switch
	Creating pipeline configuration
	Per-switch AST to code
	How to detect linear-in-state functions
	Step 1: History of variables
	Step 1: History of variables
	Step 1: History of variables
	Step 2: History of all variables
	Step 3: Determine Auxiliary State
	Question: How do you store the exit log
	Maintaining packet history
	Summary
	Slide Number 97
	Eviction processing
	Eviction processing at backing store
	Eviction ratio vs. Cache size
	Eviction ratio vs. Cache size
	Eviction ratio  Eviction rate
	Debugging Microbursts

	CDF of flowlet sizes for different flowlet thresholds.

	See more in the paper…
	Further work: Sonata
	Sonata
	Sonata Queries
	Sonata Queries
	Switches: Similar layout
	Problem: too much traffic

