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Example: Who caused a microburst?
Queue build-up deep in 

the network

Per-pkt info: challenging in software
6.4Tbit/s switch: Need 100M recs/s

COTS: 100K-1M recs/s/core

End-to-end probes
Sampling
Counters & Sketches

Mirror packets

2

Presenter Notes
Presentation Notes
traditional switch mechanisms like sampling [7, 21], mirror- ing [8, 42, 65], and counting [34, 49] are quite restrictive. None of these mechanisms provides relevant performance data, like queueing delays. 
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Switches should be first-class citizens in 
performance monitoring.



Why monitor from switches?

• Already see the queues & concurrent connections

• Infeasible to stream all the data out for external processing

• Can we filter and aggregate performance on switches directly?
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We want to build “future-proof” hardware:

Language-directed hardware design
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Expressive query language

Line-rate switch hardware primitives
6

Performance monitoring use cases



Contributions

• Marple, a performance query language

• Line-rate switch hardware design
• Aggregation: Programmable key-value store

• Query compiler
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Presenter Notes
Presentation Notes
Performance query language. Marple uses familiar functional constructs like map, filter, groupby and zip f Language directed hardware design 



Queries

Query Compiler

Programmable switches 
with the key-value store

Marple programs

Switch programs

To collection 
servers

Results
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Marple: Performance Query Language

Presenter Notes
Presentation Notes
Talk about Marple the performance query languageMore specifically,  what primitives Marple provides to a userTo explain how users can write queries with Marple, I would also refer to a couple of telemetry use cases in networkingBoth interesting to see what constructs an expressive query language in networking should haveAnd also to understand what are some of the telemetry queries network operators would be interested in



A high-level language
e.g. Marple

To express telemetry queries

Hardware supports the 
language

Presenter Notes
Presentation Notes
Recap: goal of the project:- first: have an expressive high-level language to express telemetry queries- then: have hardware to support the language



Marple

Compiler

Presenter Notes
Presentation Notes
When network operators write queries using Marple, assume there is a single stream of packetsand the compiler partitions the query across the network and executes each part on individual switches



pktstream
Stream: For each packet at each queue,

S:= (switch, qid, hdrs, uid, tin, tout, qsize) 

Location Packet 
identification

Queue entry and 
exit timestamps

Queue depth 
seen by packet
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Presenter Notes
Presentation Notes
For Marple, an important data structure is a packet stream, which is both the input and output to Marple queriesA packet stream is an ordered list of tuples,Each tuple contains metadata and performance data for a packetTuple: (switch, qid, hdrs, uid, tin, tout, qsize)Switch: which switchQid: which queueHdrs: the regular packet headers (Ethernet, IP, TCP, etc)Uid: packet idTin: enqueue timestampTout: dequeue timestampQsize: queue length when a packet is enqueued



pktstream
Stream: For each packet at each queue,

S:= (switch, qid, hdrs, uid, tin, tout, qsize) 

Familiar functional operators

filter map zip groupby
14

Presenter Notes
Presentation Notes
Marple provides four constructs to operate on pktstreamsThey are ...will learn how to use the four constructs through a couple of examples



Filter: restrict packet data of interest

result = filter(pktstream, qid == Q and switch == S and 
tout – tin > 1 ms)
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Tracking packets that experience high queueing latencies (>1ms) at 
switch S, queue Q

Presenter Notes
Presentation Notes
tracks packets that experience high queueing latencies at a specific queue (Q) and switch (S) Filter takes in a pktstream and a predicate that describes what packets we should focus on�In this case:The result is also a pktstream



Filter: restrict packet data of interest

result = filter(pktstream, qid == Q and switch == S and 
tout – tin > 1 ms)
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R_output = filter(R_input, predicate)

Presenter Notes
Presentation Notes
R_input is some stream containing performance metadata, and the predicate may involve packet headers, performance metadata, or both R_output is also a stream



Map: compute stateless functions over packets

result = map(pktstream, [tin/epoch_size], [epoch])

Rounding packet timestamps to an “epoch”

Presenter Notes
Presentation Notes
Round packet timestamps to an epochEach epoch of is size epoch_size, which should be pre-definedThe map operator evaluates the expression tin/epoch_size and produces a new field epoch.The result stream would have one more field



Map: compute stateless functions over packets

result = map(pktstream, [tin/epoch_size], [epoch])

R_output = map(R_input, [expression], [field])

Presenter Notes
Presentation Notes
The general form of map takes three inputs:A packet streama list of expressions over fields in the input stream a list of new fields that map is going to add to the output stream.Note that in our previous example, we only had one pair of expression+new field.We could potentially have a list of them



Groupby: aggregate statefully over multiple packets

result = groupby(pktstream, [5tuple], count)

def count([num],[]):
num = num+1

Counting packets belonging to each transport-level flow (i.e. 5-tuple)

Presenter Notes
Presentation Notes
Next: groupby, which enables us to aggregate statefully over multiple packetsExample: counts the number of packets belonging to each transport-level flowA transport-level flow is identified by the 5-tuple, which includes src & dst address, src & dst port and protocol id Here, groupby (1) first partitions the incoming pktstream into substreams based on the transport 5-tuple, and (2) then applies the aggregation function count to count the number of tuples in each substream. I also had a count function written below. We are keeping a state num and num tracks the number of packets. It may look a bit uninteresting here, but in the next example, we would see what inputs the aggregation function takes and how are they interesting.



Groupby: aggregate statefully over multiple packets

result = groupby(pktstream, [5tuple, switch], ewma)

def ewma([avg], [tin, tout]):
avg = ((1-alpha)*avg) + (alpha*(tout-tin))

Maintaining an exponentially weighted moving average (EWMA) of 
queueing latencies
Tracking latency spikes for each connection

Presenter Notes
Presentation Notes
The example also illustrates how groupby can be helpful. The point here is that Marple allows users to write order-dependent aggregation functions over the tuples of each substream.This example here maintains an ewma of queueing latencies in order to track …Order of packets is important here for calculating ewma because packets closer in time would have a higher weightsIf we look at the ewma function, it takes in two inputs, avg is the state we maintain and [tin, tout] is the field we need for computation from new packetsThere are some other streaming languages out there that treats a packet stream as an unordered list. Marple is special in this regard as it allows function to be applied to packets in the order they are processed. This capability also makes Marple more expressive and applicable to cases like ewma calculation.------------------------------------------------------------------------------------------------------------------Here the aggregation function ewma evolves an EWMA avg using the current value of avg and incoming packet timestamps. Unlike the previous count example, the EWMA aggregation function depends on the order of packets being processed. Unlike some other streaming languages, which treats unordered list, Marple provides an ordered stream that each packet is aggregated in the order that they dequeueFunction is applied to packets in the order they depart the queue



Groupby: aggregate statefully over multiple packets

result = groupby(pktstream, [5tuple], count)

result = groupby(pktstream, [5tuple, switch], ewma)

R_output= groupby(R_input, [aggFields], fun)

Presenter Notes
Presentation Notes
In gerenal, groupby takes this form.the aggregation function fun operates over tuples sharing attributes in a list aggFields of headers and performance metadata ---------------------------------------------------------------------------------------------------------------------The aggregation function fun is written in an imperative form, with two arguments: a list of state variables and a list of relevant incoming tuple fields 



Emit()
Tracking the size distribution of flowlets

Presenter Notes
Presentation Notes
Next we will dive deeper into an use case to explain a function called emit. We will also come back to this example again later to explain something else.The example is about tracking the size distribution of flowlets.Flowlets: bursts of packets from the same 5-tuple separated by more than a fixed amount of time delta. The yellow line is a time line, so it represents the progression of time.Each circle represents the enqueue timestamp of a packet from a transport-level flow.



Emit()
Tracking the size distribution of flowlets

Presenter Notes
Presentation Notes
Then we may want to group the packets this way, into 4 flowlets.Flowlet is a rather artificical concept, it depends on the delta i..e how far away packets need to be before we consider them as two flowlets.So the goal here is to track their size distribution



Emit()
Tracking the size distribution of flowlets

fl_track = groupby(pktstream, [5tuple], fl_detect);

def fl_detect([last_time, size], [tin]):
if (tin - last_time > delta):

emit() #stream out [last_time, size]
size = 1

else:
size = size + 1
last_time = tin

Presenter Notes
Presentation Notes
The first step is to group packet stream into flows defined by 5 tupleAnd for each flow, detect how many flowlets there areThe function fl_detect detects new flowlets using the last time a packet from the same flow was seen. If the difference between my enqueue time and last_time is larger than delta, I consider myself to be a new flowlet and thus "flush out" the two states last_time and size by using an emit().Otherwise, I increment size for this flowlet and update last_time to be my enqueue time.In this case, in fl_track (also a stream), 7 fields:5 tuples that it is grouped based onAnd the two states last_time and size------------------------------------------------------------------------------------------Not 100% sure if no emit() – my understanding is that the two states will not go into the output stream but we still retrieve the current state values from the collection servers-------------------------------------------------------------------------------------------In this case, the flowlet size from fl_track is only streamed out to other operators upon seeing the first packet of a new flowlet. 



Chaining together multiple queries

• All Marple constructs have streams as their inputs and outputs
• Write queries that take results of previous queries as inputs

Presenter Notes
Presentation Notes
The constructs like map and groupby may not seem to be that useful by themselvesBut marple can chain together multiple of them to express more complex queriesThis is possible because all marple constructs have streams as their inputs and outputsusers can write queries that take in the results of previous queries as inputs. -----------------------------------------------------------------------------------------------------------------A stream of tuples flows from one query to the next, and each query may add or filter out information from the incoming tuple, or even drop the tuple entirely. Four constructs by themselves are not that usefulChaining themselves



Chaining together multiple queries
Tracking the size distribution of flowlets

fl_track = groupby(pktstream, [5tuple], fl_detect);
fl_bkts = map(fl_track, [size/16], [bucket]);
fl_hist = groupby(fl_bkts, [bucket], count);

Presenter Notes
Presentation Notes
Now we come back to this example of tracking the size distribution of flowlets and go through them with a dummy example packet streamWe need to chain together three queries here-------------------------------------------------------------------------------------------------The map fl_bkts bins the flowlet size emitted by fl_track into a bucket index, which is used to count the number of flowlets in the corresponding bucket in fl_hist. 



Chaining together multiple queries

src_addr dst_addr src_port dst_port protocol id tin ...

1 2 0 0 0 2 ...

5 1 1 2 0 0 ...

1 2 0 0 0 3 ...

... ... ... ... ... ... ...

fl_track = groupby(pktstream, [5tuple], fl_detect);
fl_bkts = map(fl_track, [size/16], [bucket]);
fl_hist = groupby(fl_bkts, [bucket], count);

Presenter Notes
Presentation Notes
Let's say we start with this raw packet stream Many fields including src_addr, ….More than three rows(dummy numbers)



Chaining together multiple queries

src_addr dst_addr src_port dst_port protocol id last_time size

1 2 0 0 0 10 11

5 1 1 2 0 22 30

... ... ... ... ... ...

fl_track = groupby(pktstream, [5tuple], fl_detect);
fl_bkts = map(fl_track, [size/16], [bucket]);
fl_hist = groupby(fl_bkts, [bucket], count);

Presenter Notes
Presentation Notes
We've seen the first query before.Here, we aggregate packets by 5 tuple and track the number of flowlets in each 5tupleFl_track will look like this:(1) packets are now grouped by 5tuple(2) add two fields for the two states we track – last_time and sizeSize indicates the number of flowlets we are interested in



Chaining together multiple queries

src_addr dst_addr src_port dst_port protocol id last_time size bucket

1 2 0 0 0 10 11 0

5 1 1 2 0 22 30 1

fl_track = groupby(pktstream, [5tuple], fl_detect);
fl_bkts = map(fl_track, [size/16], [bucket]);
fl_hist = groupby(fl_bkts, [bucket], count);

Presenter Notes
Presentation Notes
The second query takes fl_track as an input streamIt adds a new field bucket to the stream by taking size divided by 16The overall goal is to have a histogram for the flowlet size distributionSo here, we are making things a little bit more coarse-grained by grouping adjacent sizes into buckets



Discussion: given fl_bkts, how should fl_hist
look like?
fl_track = groupby(pktstream, [5tuple], fl_detect);
fl_bkts = map(fl_track, [size/16], [bucket]);
fl_hist = groupby(fl_bkts, [bucket], count);

src_addr dst_addr src_port dst_port protocol id last_time size bucket

1 2 0 0 0 10 11 0

5 1 1 2 0 22 30 1

1 3 0 4 0 10 6 0

3 2 1 3 0 26 26 1

1 1 2 8 0 10 13 1

2 5 1 1 1 35 41 2

Presenter Notes
Presentation Notes
Discussion timeAdded 4 more rows to make it more interestingAsk people to share:How many rows there are?How many columns there are?What are the rows?



Chaining together multiple queries

bucket count

0 2

1 3

2 1

fl_track = groupby(pktstream, [5tuple], fl_detect);
fl_bkts = map(fl_track, [size/16], [bucket]);
fl_hist = groupby(fl_bkts, [bucket], count);

Presenter Notes
Presentation Notes
Grouping by bucket and counting the number of tuples in each bucketPeople should easily plot a histogram with fl_hist and understand the size distribution of flowlest



Zip: join results across queries
Example: detecting TCP incast

TCP incast: fan-in of packets from many connections into a single queue

1. The number of active flows in a queue over a short interval of time is high
2. The queue occupancy is large

Presenter Notes
Presentation Notes
Chaining queries together makes Marple pretty powerfulThe last piece to the puzzle is zip, which is another powerful construct that makes Marple expressivea zip operator “joins” the results of two queries to check whether two conditions hold simultaneously. We will consider the example of detecting TCP incast, which is signaled by the fan-in of packets from many connections into a single queueA TCP incast has two important characteristicsQueue grows a lot -> (2) the queue occupancy is large. Packets come from different active flows -> (1) the number of active flows in a queue over a short interval of time is high



Zip: join results across queries
Example: detecting TCP incast

1. Compute the number of active flows over the current epoch
R1 = map(pktstream, [tin/epoch_size], [epoch]);
R2 = groupby(R1, [5tuple, epoch], new_flow);
R3 = groupby(R2, [epoch], count);

2. Combine with the queue occupancy information in the original pktstream
R4 = zip(R3, pktstream);
result = filter(R4, qsize > 100 and count > 25);

Presenter Notes
Presentation Notes
Will quickly go through this example without too much detailFirst step: compute the number of active flows …R1 divide packets into epochsR2: in each epoch for each flow/5tuple, pick the first packet of every new flowR3:in each epoch, count number of packets, which is equal to the number of new flowsSecond step: we combine R3 with the original pktstream and filter packets that have both long queue and high number of active flowsNote that zip is a special kind of stream join where the result can be computed without having to synchronize the two streamsAs long as tuples of both streams originate from the same pktstream, Marple can figure things out-------------------------------------------------------The result of a zip operation over two input streams is a single stream containing tuples that are a concatenation of all the fields in the two streams, whenever both input streams contain valid tuples processed from the same original packet tuple. The result of the zip can be processed like any other stream: the filter in the result query checks the two incast conditions above. 



What Marple cannot do
Example

• EWMA over some packet field across all packets seen anywhere in the entire 
network, while processing packets in the order of their tout values.

• Challenges:

• Coordinate between switches

• OR stream all packets to a central location.

Presenter Notes
Presentation Notes
We have talked about how powerful Marple is, and it is also important to note what Marple cannot doConsider this example of calculating …Ewma is sensitive to the packet order, if we want to do it network-wide, we have to either:Coordinate between switches, this means that if the packets we are interested in come from two switches, we need to constantly communicate between the two switches to make sure that we get the packet order right, which is not realisticOr we can stream all packets to a central location and sort there and then compute, but this can be expensive too



What Marple cannot do

• Aggregations that need to process multiple packets at multiple switches in 
order of their tout values.

Presenter Notes
Presentation Notes
In summary, Marple cannot do aggregations that ...



What Marple can do

1. Operate independently on each switch

2. Operate independently on each packet

3. Associative and commutative

Presenter Notes
Presentation Notes
In this last slide of the section, I want to summarize what queries Marple can process:(1) such that we can naturally partition queries by switch (e.g., a per-flow EWMA of queueing latencies on a particular switch), or (2) such that we can have the packet carry the aggregated state to the next switch on its path (e.g., a rolling average link utilization seen by the packet along its path), or (3) in which case independent switch-local results can be combined in any order to produce a correct overall result (e.g., a count of how many times packets from a flow appeared throughout the network. In this case, we rely on the programmer to annotate the aggregation function with the assoc and comm keywords. )



Hardware Implementation



Architecture of a PISA switch



The Banzai Machine

In practice, atom templates will 
be designed by an ASIC 
engineer and exposed as a 
machine’s instruction set



filter map zip groupby

Implementing Marple on switches

Stateless match-action rules
[RMT SIGCOMM’13]

S:= (switch, hdrs, uid, qid, tin, tout, qsize) 

Switch telemetry
[INT SOSR’15]



filter map zip groupby

Implementing Marple on switches

Stateless match-action rules
[RMT SIGCOMM’13]

S:= (switch, hdrs, uid, qid, tin, tout, qsize) 

Switch telemetry
[INT SOSR’15]



The GROUPBY problem

• GROUPBY is the only language primitive that required a state to be 
stored. It wants a Key-Value store.

• Each stage in PISA contained only a few registers, TCAMs, and 
memory arrays (SRAMs). 



The GROUPBY problem

• Example Application: Exponentially Weighted Moving Average 
(EWMA)

• 𝐴𝐴𝐴𝐴𝐴𝐴 = 𝛼𝛼 ⋅ 𝑁𝑁𝑁𝑁𝑁𝑁 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑁𝑁 + 1 − 𝛼𝛼 ⋅ (𝑃𝑃𝑃𝑃𝑁𝑁𝐴𝐴𝑃𝑃𝑃𝑃𝑉𝑉𝑃𝑃 𝐴𝐴𝐴𝐴𝐴𝐴)

• Older values are exponentially less important
• Moving Average without requiring to keep track of entire window.



The GROUPBY problem

• EWMA of queueing latency of a flow.

• S:= (switch, hdrs, uid, qid, tin, tout, qsize) 

• Key:= [hdrs(“TCP”, SrcIP, SrcPort, DstIP, DstPort), switch]

• NewValue:= tout – tin

• The key space is quite large. On-chip SRAM won’t be able to store all 
the information, and off-chip storage will not achieve line-rate.

• Solution: Cache



Caching:
the illusion of fast and large memory
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Caching

Key Value

On-chip cache 
(SRAM) Key Value

Off-chip backing 
store (DRAM)

51



Caching

Key Value
Read value for 
5-tuple key K

Key Value
On-chip cache 

(SRAM)

Off-chip backing 
store (DRAM)

Modify value 
using ewma
Write back
updated value
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Caching

Key Value
Read value for 
5-tuple key K

Key Value
On-chip cache 

(SRAM)

Off-chip backing 
store (DRAM)

Req. key K

Resp. Vback

VbackK
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Caching

Key Value
Key Value

On-chip cache 
(SRAM)

Req. key K

Resp. Vback

K VbackRead value for 
5-tuple key K

Off-chip backing 
store (DRAM)

K Vback
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Caching

Key Value
Key Value

On-chip cache 
(SRAM)

Request key K

Respond K, V’’

K V’’

K V’’

Read value for 
5-tuple key K

Off-chip backing 
store (DRAM)

Modify and write must wait for DRAM.

Non-deterministic latencies stall packet pipeline.
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Instead, we treat cache misses as 
packets from new flows.
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Cache misses as new keys

Key Value
Key Value

On-chip cache 
(SRAM)

K V0

Read value for 
key K

Off-chip backing 
store (DRAM)
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Cache misses as new keys

Key Value
Key Value

On-chip cache 
(SRAM)

Evict K’,V’cache K’ V’back

K V0

Read value for 
key K

Off-chip backing 
store (DRAM)
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Cache misses as new keys

Key Value
Key Value

On-chip cache 
(SRAM)

Evict K’,V’cache K’

K V0

Read value for 
key K

Off-chip backing 
store (DRAM)

Merge

V’back
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Cache misses as new keys

Key Value
Key Value

On-chip cache 
(SRAM)

Evict K’,V’cache K’

K V0

Read value for 
key K

Off-chip backing 
store (DRAM)

Nothing to 
wait for.

V’back
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Cache misses as new keys

Key Value
Key Value

On-chip cache 
(SRAM)

Evict K’,Vsram K’

K V0

Read value for 
key K

Off-chip backing 
store (DRAM)

(nothing returns)

V’dram

Packet processing doesn’t wait for DRAM.

Retain 1 pkt/ns processing rate!👍👍
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The Merge operation

𝑚𝑚𝑁𝑁𝑃𝑃𝐴𝐴𝑁𝑁(𝐴𝐴([𝑞𝑞𝑗𝑗]),𝐴𝐴([𝑝𝑝𝑃𝑃]))

= 𝐴𝐴([𝑝𝑝𝑝, … ,𝑝𝑝𝑝𝑝, 𝑞𝑞𝑝, … , 𝑞𝑞𝑚𝑚])

• Example: if g is a counter, merge is just addition!

Vcache Vback

Fold over the entire packet sequence

64



Merging Case 1: Associative

• The operation with each new incoming value is a simple associative 
operation.

• Example: Counting packets in a flow. Finding maximum queueing time 
(tout-tin)

• Trivial: Just apply the same function upon eviction.



Merging Case 2: Linear-in-state

• Consider the EWMA again:
𝐴𝐴𝐴𝐴𝐴𝐴 = 𝛼𝛼 ⋅ 𝑁𝑁𝑁𝑁𝑁𝑁 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑁𝑁 + 1 − 𝛼𝛼 ⋅ (𝑃𝑃𝑃𝑃𝑁𝑁𝐴𝐴𝑃𝑃𝑃𝑃𝑉𝑉𝑃𝑃 𝐴𝐴𝐴𝐴𝐴𝐴)

• Denote the stored EWMA value as 𝑃𝑃. Assume when we initialize 
EWMA, we set its value to 𝑃𝑃0 (which could just simply be 0).

𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑃𝑃𝑏𝑏𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏



Merging Case 2: Linear-in-state

• Question: How to merge EWMA cache value with EWMA value in 
DRAM?

• 𝐴𝐴𝐴𝐴𝐴𝐴 = 𝛼𝛼 ⋅ 𝑁𝑁𝑁𝑁𝑁𝑁 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑁𝑁 + 1 − 𝛼𝛼 ⋅ (𝑃𝑃𝑃𝑃𝑁𝑁𝐴𝐴𝑃𝑃𝑃𝑃𝑉𝑉𝑃𝑃 𝐴𝐴𝐴𝐴𝐴𝐴)
• 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑁𝑁𝑁𝑁𝑚𝑚𝑉𝑉 𝑝𝑝𝑏𝑏 … 𝑝𝑝𝑗𝑗
• 𝑃𝑃𝑏𝑏𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑁𝑁𝑁𝑁𝑚𝑚𝑉𝑉(𝑝𝑝𝑗𝑗−1 …𝑝𝑝0)
• Want 𝑁𝑁𝑁𝑁𝑚𝑚𝑉𝑉 𝑝𝑝𝑏𝑏 … 𝑝𝑝0

𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑃𝑃𝑏𝑏𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏



Merging Case: Linear-in-state

• 𝑃𝑃𝑏𝑏𝑐𝑐𝑛𝑛 = 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 1 − 𝛼𝛼 𝑁𝑁 ⋅ (𝑃𝑃𝑏𝑏𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑃𝑃0)

• Need the value of 1 − 𝛼𝛼 𝑁𝑁 (or just 𝑁𝑁) to calculate the merged value

𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑃𝑃𝑏𝑏𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏



Merging Case: Linear-in-state

• The state update can be expressed in the form of
𝑆𝑆 = 𝐴𝐴 𝒑𝒑 ⋅ 𝑆𝑆 + 𝐵𝐵(𝒑𝒑)

Where 𝒑𝒑 is header and performance data of last 𝑘𝑘 packets. 
𝐴𝐴 𝒑𝒑 ,𝐵𝐵(𝒑𝒑) are functions of limited packet history.
𝑘𝑘 is a integer defined at compile time (and usually small).

• In general, all linear-in-state folding functions only need O(n) auxiliary 
state to merge them.

• All aggregation functions that maintain a linear auxiliary state is 
mergeable.

Presenter Notes
Presentation Notes
Small because the switch will need to carry a packet history of k packets.



Microbursts: Linear-in-state!
def bursty([last_time, nbursts], [tin]): 
if tin - last_time > 800 ms: 
nbursts = nbursts + 1 

last_time = tin 

result = groupby(S, 5tuple, bursty) 

nbursts: S = A * S + B, where
A = 1
B = {1, if current pkt within time gap from last; 

0 otherwise} 72



Other linear-in-state queries

• Counting successive TCP packets that are out of order
• Histogram of flowlet sizes
• Counting number of timeouts in a TCP connection

• … 7/10 example queries in our paper
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Merging Case: Non-mergeable

• Remaining non-mergeable cases
• Queries with aggregation functions that are neither associative nor linear-in-state.
• GROUPBY aggregation functions with emit() – This will emit state value, which 

requires an instant merge.
• In some cases, emit() can be avoided by rewriting the query.

• Solution: Move to Domino, which then compiles to a Banzai 
machine model, which gets mapped to the target platform.

• i.e. Compile to the register, ALU and sALU level of the target 
platform, and try to fit it into the pipeline. Key space will be 
limited.



Hardware Feasibility

• The stateful hardware can be broken down into five components.
• On-chip cache: A hash table implemented with SRAM.
• Off-chip backing store: A scale-out key-value store, such as Redis.
• Maintaining packet history – Store in pipeline.
• Performing Linear-in-state calculations: Multiply-Accumulate instruction.
• Handling not linear-in-state functions: Domino Atom.



Query Compilation



Theoretical results

77

Given:
• A user-defined fold function f
• A sequence of packets p
• Want to create an "iterated function" to store in the backing, with:

fp(s) = f(s, p)
For any backing state s

• The cache stores fp for the current sequence, and that becomes the 
"merge" function once evicted.



78

For any f, we can store fp as the answer for any possible s in the backing 
store

There are 2n such s and the answers have size n.
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Proof:
• If associative, 0 auxiliary state.
• If linear-in-state, then f looks like A(h)*s + B(h), where A and B use only 

bounded history
• fp(s, {p1...pk}) can be written A'*s + C(p1...pk)
• A' = A(pk)...A(p1)
• C = B(pk) + A*B(pk-1)+ … A*…*A*B(p1)
• So, the switch can just store/update A' and C, which each have 

size linear in n.



Running example



Network-wide to switch programs

• Goal: take a query about an abstract stream and output a program for 
each switch in the network

• Solution: Syntactically check each filter predicate to determine which 
switches should have each function.



Network-wide to switch programs



Permitted queries

• Operate independently on each switch:
• Check AST of query

• Operate independently per packet:
• Check that groubpy aggregates by uid

• Operations are associative and commutative
• Programmer must annotate



Checking if queries are per-switch

• Propagate whether a stream is switch-partitioned through the query:
• Base packetstream is not partitioned.
• Filter and zip outputs are switch-partitioned based on syntactic check
• Map preserves partition
• Groupby is switch-partitioned if it aggregates by switch.



Checking if queries are per-switch



Creating pipeline configuration

• After the previous checks, Marple has per-switch programs to place 
into the pipeline

• Must care to avoid read/write dependencies; place AST in reverse 
order

Filter Map Zip Groupby



Per-switch AST to code

• The hard query to compile is groupby
• Filter, zip is just checking predicate and setting a bit in the packet
• Map adds a new header field with the resulting expression
• Transform GroupBy aggregation functions into a series of if 

statements that fit into a P4 action, with a register storing variables
• Use program analysis algorithm from the 70s

• Domino can directly handle the series of if-statements.



How to detect linear-in-state functions

• Very difficult to detect all LIS functions
• Enough to have syntax checks, but not algebraic rewriting
• Suffices to check that all variables (state in register, or headers) are 

linear in state
• All header variables are clearly LIS



Step 1: History of variables

• For each variable, check how many packets it depends on
• Headers of the current packet are 1
• State replaced per packet are 2
• Counters that contain every packet are infinite



Step 1: History of variables

• Hard to check whether a state (register) variable is LIS



Step 1: History of variables

• Assume state variables have infinite history for safety
• Check each assignment:

• If a state variable is assigned to an expression with finite history, it has finite 
history

• Check branches for the maximum history of:
• Predicate
• Branch 1
• Branch 2

• Continue until a fixpoint is reached (propagates constant histories as far as 
possible)

• Each loop, increment all histories (until ficxpoint)



Step 2: History of all variables

• If all state variables have finite history, then the update is LIS, since 
we can just send a finite packet history

• If some are infinite, then we have to check if their updates are linear-
in-state (for example, the EWMA example)

• Done by simply checking syntactically if assignment looks like

• Where A, B are expressions with finite history (as computed before)

• Branching predicates cannot have infinite history

S := A.S + B



Step 3: Determine Auxiliary State

• Once we have checked that State variables are LIS, we need to 
determine what is stored in the registers. Each state variable gets:

• A packet counter c
• An entry log (logs from insertion)
• An exit log (logs most recent packets)
• A running product S

• Once c is bigger than the LIS bound, we start multiplying S by the LIS 
matrix A for every update to the variable

• On eviction, send S and the exit log so that the store can merge



Question: How do you store the exit log

• Must store the previous k packets so that the backing store can 
compute "C" to merge



Maintaining packet history

Stage i Stage 
i+k

Stage 
i-1

Compute 
hash idx

Cur = hdrs

P1 = read(idx)
write(idx, Cur)
Cur = P1

Pk = read(idx)
write(idx, Cur)

Stage 
i+k+1

Compute A(P1...Pk)
And B(P1...Pk), and do 
update.

Move all stored packets down the line



Summary



Evaluation:
Is processing the evictions feasible?

97



Eviction processing

Key Value
Key Value

On-chip cache 
(SRAM)

Evict K’,V’cache K’ V’back

K V0

Off-chip backing 
store (DRAM)
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Eviction processing at backing store

• Trace-based evaluation: 
• “Core14”, “Core16”: Core router traces from CAIDA (2014, 16)
• “DC”: University data center trace from [Benson et al. IMC ’10]
• Each has ~100M packets

• Query aggregates by 5-tuple (key)
• Show results for key+value size of 256 bits

• 8-way set-associative LRU cache eviction policy

• Eviction ratio: % of incoming pkts that result in a cache eviction99



Eviction ratio vs. Cache size
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Eviction ratio vs. Cache size

218 keys == 64 Mbits

4% pkt eviction ratio

25X reduction from 
processing each pkt

101



Eviction ratio  Eviction rate

• Consider 64-port X 100-Gbit/s switch

• Memory: 256 Mbits
• 7.5% area

• Eviction rate: 8M records/s
• ~ 32 cores

102



Debugging Microbursts

103

Presenter Notes
Presentation Notes
Queue depth - measure the queue depth - conclude requests latency due to queue build up periodic spikes in queue length 



CDF of flowlet
sizes for different 
flowlet thresholds.
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Presenter Notes
Presentation Notes
Flow between two endpoints within a duration how many packets flow. We can give fine grained detail like flow let size using this system. �Delta - flow let size We can give fine grained detail like flow let size using this system. 



See more in the paper…

• More performance query examples

• Query compilation algorithms

• Evaluating hardware resources for stateful computations

• Implementation & end-to-end walkthroughs on mininet
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Further work: Sonata

• Marple focuses on executing queries in the data plane
• The Key-Value store deals with cache sizing
• Sonata adds a central query controller/stream processor that 

allows for more complex queries
• Sonata does "what it can" on the switch and forwards 

intermediate results to the stream processor
• Similar to Marple, the main issue is the "join" operation that 

joins two streams.
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Sonata
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Sonata Queries
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Sonata Queries
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Switches: Similar layout

110



Problem: too much traffic

• The stream processor cannot handle all events from all 
individual keys.

• Solution: make queries more general if there are too many keys
• Called refinement; incrementally refine until manageable

111
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