
Control-Theoretic Approach for 
Dynamic Adaptive Video Streaming 

over HTTP
Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, Bruno Sinopoli

Presenters: Seanna Zhang, Qianfan Zhang, Hongyu Wen, Yihan Wang
Mar 31, 2023



Quality of Experience (QoE)

• Increase of video streaming traffic to Internet 
• Demand for better user experience
• Metrics

• Startup delay
• Duration of rebuffering
• Average playback bitrate
• Variability of bitrate delivery
• Rendering quality

Image Credit: F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. A. Joseph, A. Ganjam, J. Zhan, and H. Zhang. Understanding the Impact of Video 
Quality on User Engagement. In Proc. ACM SIGCOMM, 2011.



Adaptive Video Player

• HTTP-based delivery is predominated today
• Basic DASH architecture

• Video is partitioned into chunks
• Each chunk is encoded into different bitrate
• Server sends manifest file with chunk information
• Player uses some inputs to select bitrate level
• Requested, downloaded, rendered



Bitrate Adaptation Logic

• Motivation: Low QoE would lead user to leave video sessions → 
negative impact on revenue for content providers

• Bitrate adaptation logic is important to optimize user experience
• Adaptive bitrate (ABR) algorithms

• Goal: to choose the bitrate level for future chunks to deliver the 
highest possible QoE



Challenge: Many Conflicting QoE Consideration

• Minimizing rebuffering events
• Delivering a high playback bitrate
• Minimizing startup delay
• Keeping playback smooth



Extreme solutions

• Always pick lowest bitrate
• To minimize rebuffering events and startup delay
• Conflict with delivering high bitrate

• Always select highest bitrate
• Lead to many rebuffering events

• Goal of maintaining smooth playback
• Optimal choice may switch bitrates for every chunk to minimize rebuffering 

and maximize average bitrate



Classes of Algorithms

• Rate-based algorithms
• Estimate the available network throughput to decide
• The estimation is easily to be impacted by several factors, leading inaccurate 

estimation
• Network bandwidth fluctuation

• Buffer-based algorithms
• Relies on buffer occupancy as metric to select
• More stable to handle network fluctuations
• Ignoring any available throughput information

• Each approach is isolation and work under specific environmental 
assumptions

• Need new approach to combine these two signals



Paper’s Solutions/Contributions

• Client-side adaptation
• Offer most immediately deployable alternative compare to solutions

• Requires in-network support
• Changes in server-side software
• Modifies lower-layer transport protocols

• Is best position to detect performance issue quickly and respond to dynamics
• Formulate bitrate adaptation as a stochastic optimal control problem
• Proposed Model Predictive Control (MPC) approach to solve optimization 

problem
• Designed a practical and fast table enumeration based algorithm, FastMPC
• Deployed a low-overhead implementation based on the open source reference 

video player dash.js
• Validated approach with different classes of algorithms using realistic trace-driven 

emulations



Control-Theoretic Model and MPC

• Previous works
• The video streaming model
• Optimization goal: QoE
• Class of algorithms
• Model predictive control



Previous works
• Lack of a uniformed evaluation

• {bitrate, smoothness, rebuffer rate, 
startup delay}

• Compared separately

• Lack of a general design space
• Solely based on throughput estimation
• Solely based on buffer occupancy

J. Jiang, V. Sekar, and H. Zhang. Improving Fairness, Efficiency, and Stability in HTTP-based Adaptive 
Video Streaming with FESTIVE. In Proc. CoNext, 2012.

T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. A Buffer-Based Approach to Rate 
Adaptation: Evidence from a Large Video Streaming Service. In Proc. ACM SIGCOMM, 2014.

T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. A Buffer-Based Approach to Rate 
Adaptation: Evidence from a Large Video Streaming Service. In Proc. ACM SIGCOMM, 2014.



The video streaming model: server-side

• Video stored as 𝐾𝐾 consecutive 
chunks 1,2, … ,𝐾𝐾, each 

• Contains 𝐿𝐿 seconds of video (e.g., 
𝐿𝐿 = 4 seconds)

• Available in different bitrates (e.g., 
{350, 600, 1000 2000, 3000} Kbps)

• Size of a chunk 𝑑𝑑𝑘𝑘 𝑅𝑅𝑘𝑘 = 𝐿𝐿 ⋅ 𝑅𝑅𝑘𝑘 if 
assuming constant bitrate encoding

• For variable bitrate encoding, still have 
𝑑𝑑𝑘𝑘 𝑅𝑅𝑘𝑘 ∼ 𝑅𝑅𝑘𝑘, but can differ across 
chunks

https://streaminglearningcenter.com/wp-content/uploads/2021/05/abr_stream_4.png

https://www.videoconverterfactory.com/tips/imgs-self/vbr-vs-cbr/vbr-vs-cbr-1.jpg



The video streaming model: client-side

• Video chunks are requested and downloaded into a playback buffer
• Contains downloaded yet unviewed video
• Maximum buffer size (in seconds): 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 (𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 = 30 seconds in the paper)

• The download time for chunk 𝑘𝑘 is 𝑑𝑑𝑘𝑘(𝑅𝑅𝑘𝑘)
𝐶𝐶𝑘𝑘

• 𝑑𝑑𝑘𝑘(𝑅𝑅𝑘𝑘) is the size of chunk
• 𝐶𝐶𝑘𝑘 is the average throughput when downloading the chunk

• Decision: which bitrate 𝑅𝑅𝑘𝑘 to choose for the next chunk
• Also can decide the waiting time Δ𝑡𝑡𝑘𝑘 before downloading the next chunk 

(only used when buffer is full in the paper)
• Server can also “guide” client what bitrate to choose

Discussion: 
What are pros/cons for client-side vs server-side decision for adaptive bitrate?



The video streaming model: dynamics
• Given

• 𝐿𝐿: chunk length
• 𝐵𝐵𝑘𝑘: buffer size when starting download 𝑘𝑘
• 𝑅𝑅𝑘𝑘: selected bitrate for 𝑘𝑘
• 𝑑𝑑𝑘𝑘(𝑅𝑅𝑘𝑘): size of 𝑘𝑘 (𝐿𝐿 ⋅ 𝑅𝑅𝑘𝑘 if assume CBR encoding)
• 𝐶𝐶𝑘𝑘: average throughput when downloading 𝑘𝑘
• Δ𝑡𝑡𝑘𝑘: extra waiting time before download 𝑘𝑘 + 1

• In the paper, Δ𝑡𝑡𝑘𝑘 = 𝐵𝐵𝑘𝑘 −
𝑑𝑑𝑘𝑘 𝑅𝑅𝑘𝑘
𝐶𝐶𝑘𝑘 +

+ 𝐿𝐿 − 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚
+

• We have the buffer size when starting download 𝑘𝑘 + 1

• 𝐵𝐵𝑘𝑘+1 = 𝐵𝐵𝑘𝑘 −
𝑑𝑑𝑘𝑘 𝑅𝑅𝑘𝑘
𝐶𝐶𝑘𝑘 +

+ 𝐿𝐿 − Δ𝑡𝑡𝑘𝑘
+

• Rebuffer event happens when 𝐵𝐵𝑘𝑘 < 𝑑𝑑𝑘𝑘 𝑅𝑅𝑘𝑘
𝐶𝐶𝑘𝑘

with rebuffer time 𝑑𝑑𝑘𝑘 𝑅𝑅𝑘𝑘
𝐶𝐶𝑘𝑘

− 𝐵𝐵𝑘𝑘
+



Multiple objectives

• Select bitrate as high as possible
• Maximize average video quality 1

𝐾𝐾
∑𝑘𝑘=1𝐾𝐾 𝑞𝑞(𝑅𝑅𝑘𝑘) for some function 𝑞𝑞(⋅) that 

maps a bitrate to some score

• Avoid frequent or large bitrate jumps
• Minimize quality variations ∑𝑘𝑘=1𝐾𝐾−1 𝑞𝑞 𝑅𝑅𝑘𝑘+1 − 𝑞𝑞 𝑅𝑅𝑘𝑘

• Avoid rebuffer events
• Minimize total rebuffer time ∑𝑘𝑘=1𝐾𝐾 𝑑𝑑𝑘𝑘 𝑅𝑅𝑘𝑘

𝐶𝐶𝑘𝑘
− 𝐵𝐵𝑘𝑘

+

• Minimize startup delay 𝑇𝑇𝑠𝑠
• Note that authors defined 𝑇𝑇𝑠𝑠 as the “initial buffer occupancy”



Objectives combined: QoE

• Parameters to choose:
• Weights 𝜆𝜆, 𝜇𝜇, 𝜇𝜇𝑠𝑠
• Quality function for bitrate: 𝑞𝑞(⋅)

𝑄𝑄𝑄𝑄𝑄𝑄 =
1
𝐾𝐾
�
𝑘𝑘=1

𝐾𝐾

𝑞𝑞(𝑅𝑅𝑘𝑘) − 𝜆𝜆�
𝑘𝑘=1

𝐾𝐾−1

𝑞𝑞 𝑅𝑅𝑘𝑘+1 − 𝑞𝑞 𝑅𝑅𝑘𝑘 − 𝜇𝜇�
𝑘𝑘=1

𝐾𝐾
𝑑𝑑𝑘𝑘 𝑅𝑅𝑘𝑘
𝐶𝐶𝑘𝑘

− 𝐵𝐵𝑘𝑘
+
− 𝜇𝜇𝑠𝑠𝑇𝑇𝑠𝑠



QoE: Choice of function 𝑞𝑞

• In the paper, 𝑞𝑞 is chosen to be identity, i.e., 𝑞𝑞 𝑅𝑅 = 𝑅𝑅

𝑄𝑄𝑄𝑄𝑄𝑄 =
1
𝐾𝐾
�
𝑘𝑘=1

𝐾𝐾

𝑞𝑞(𝑅𝑅𝑘𝑘) − 𝜆𝜆�
𝑘𝑘=1

𝐾𝐾−1

𝑞𝑞 𝑅𝑅𝑘𝑘+1 − 𝑞𝑞 𝑅𝑅𝑘𝑘 − 𝜇𝜇�
𝑘𝑘=1

𝐾𝐾
𝑑𝑑𝑘𝑘 𝑅𝑅𝑘𝑘
𝐶𝐶𝑘𝑘

− 𝐵𝐵𝑘𝑘
+
− 𝜇𝜇𝑠𝑠𝑇𝑇𝑠𝑠

Discussion:
Consider the following three functions. Which makes more sense to you?
Or, in what scenario would you choose each one?

𝑅𝑅

𝑞𝑞 𝑅𝑅 𝑞𝑞 𝑅𝑅

𝑅𝑅 𝑅𝑅

𝑞𝑞 𝑅𝑅



QoE: Choice of parameters 𝜆𝜆, 𝜇𝜇, 𝜇𝜇𝑠𝑠

• In this paper
• “Balanced”: 𝜆𝜆 = 1,𝜇𝜇 = 𝜇𝜇𝑠𝑠 = 3000

• 1 second rebuffer/start-up delay = reducing the average bitrate by 3000 Kbps
• “Avoid instability”: 𝜆𝜆 = 3,𝜇𝜇 = 𝜇𝜇𝑠𝑠 = 3000
• “Avoid rebuffering”: 𝜆𝜆 = 1, 𝜇𝜇 = 𝜇𝜇𝑠𝑠 = 6000

𝑄𝑄𝑄𝑄𝑄𝑄 =
1
𝐾𝐾
�
𝑘𝑘=1

𝐾𝐾

𝑞𝑞(𝑅𝑅𝑘𝑘) − 𝜆𝜆�
𝑘𝑘=1

𝐾𝐾−1

𝑞𝑞 𝑅𝑅𝑘𝑘+1 − 𝑞𝑞 𝑅𝑅𝑘𝑘 − 𝜇𝜇�
𝑘𝑘=1

𝐾𝐾
𝑑𝑑𝑘𝑘 𝑅𝑅𝑘𝑘
𝐶𝐶𝑘𝑘

− 𝐵𝐵𝑘𝑘
+
− 𝜇𝜇𝑠𝑠𝑇𝑇𝑠𝑠



The QoE maximization problem

• Parameters:
• 𝜆𝜆, 𝜇𝜇, 𝜇𝜇𝑠𝑠, 𝑞𝑞(⋅)

• Input:
• Chunk length 𝐿𝐿 and size 𝑑𝑑𝑘𝑘 ⋅
• Buffer capacity 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚
• Throughput trace {𝐶𝐶𝑡𝑡}

• Output:
• Bitrate decisions 𝑅𝑅1, … ,𝑅𝑅𝐾𝐾
• Startup delay 𝑇𝑇𝑠𝑠
• Waiting time Δ𝑡𝑡𝑘𝑘 (not used in this paper)

𝑄𝑄𝑄𝑄𝑄𝑄1𝐾𝐾 =
1
𝐾𝐾
�
𝑘𝑘=1

𝐾𝐾

𝑞𝑞(𝑅𝑅𝑘𝑘) − 𝜆𝜆�
𝑘𝑘=1

𝐾𝐾−1

𝑞𝑞 𝑅𝑅𝑘𝑘+1 − 𝑞𝑞 𝑅𝑅𝑘𝑘 − 𝜇𝜇�
𝑘𝑘=1

𝐾𝐾
𝑑𝑑𝑘𝑘 𝑅𝑅𝑘𝑘
𝐶𝐶𝑘𝑘

− 𝐵𝐵𝑘𝑘
+
− 𝜇𝜇𝑠𝑠𝑇𝑇𝑠𝑠



The online QoE maximization problem

• Parameters:
• 𝜆𝜆, 𝜇𝜇, 𝜇𝜇𝑠𝑠, 𝑞𝑞(⋅)

• Input:
• Chunk length 𝐿𝐿 and size 𝑑𝑑𝑘𝑘 ⋅
• Buffer capacity 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚
• Throughput trace {𝐶𝐶𝑡𝑡}

• Output:
• Bitrate decisions 𝑅𝑅1, … ,𝑅𝑅𝐾𝐾
• Startup delay 𝑇𝑇𝑠𝑠
• Waiting time Δ𝑡𝑡𝑘𝑘 (not used in this paper)

𝑄𝑄𝑄𝑄𝑄𝑄1𝐾𝐾 =
1
𝐾𝐾
�
𝑘𝑘=1

𝐾𝐾

𝑞𝑞(𝑅𝑅𝑘𝑘) − 𝜆𝜆�
𝑘𝑘=1

𝐾𝐾−1

𝑞𝑞 𝑅𝑅𝑘𝑘+1 − 𝑞𝑞 𝑅𝑅𝑘𝑘 − 𝜇𝜇�
𝑘𝑘=1

𝐾𝐾
𝑑𝑑𝑘𝑘 𝑅𝑅𝑘𝑘
𝐶𝐶𝑘𝑘

− 𝐵𝐵𝑘𝑘
+
− 𝜇𝜇𝑠𝑠𝑇𝑇𝑠𝑠

Unknown in advance!



Class of algorithms

• Rate-based: bitrate as a function of throughput 
prediction

• 𝑅𝑅𝑘𝑘 = 𝑓𝑓 �̂�𝐶𝑡𝑡 𝑡𝑡>𝑡𝑡𝑘𝑘
, 𝑅𝑅𝑖𝑖 𝑖𝑖<𝑘𝑘 given predictions �̂�𝐶𝑡𝑡 𝑡𝑡>𝑡𝑡𝑘𝑘obtained by a throughput predictor 

• Buffer-based: bitrate as a function of buffer 
occupancy

• 𝑅𝑅𝑘𝑘 = 𝑓𝑓 𝐵𝐵𝑘𝑘 , {𝑅𝑅𝑖𝑖 𝑖𝑖<𝑘𝑘)
• Combined:

• 𝑅𝑅𝑘𝑘 = 𝑓𝑓 𝐵𝐵𝑘𝑘 , �̂�𝐶𝑡𝑡 𝑡𝑡>𝑡𝑡𝑘𝑘
, 𝑅𝑅𝑖𝑖 𝑖𝑖<𝑘𝑘

• This paper: focus on 𝑓𝑓 rather than throughput 
predictor



Candidates

• PID (Proportional-integral-derivative) control:
• Used to stabilize the system, cannot directly optimize QoE
• Designed to work in continuous time and state space

• MDP-based (Markov decision process) control:
• Must assume throughput dynamics follows Markov process

• i.e., the throughput at step 𝑘𝑘 + 1 depends only on the throughput at step 𝑘𝑘.
• Include last 𝑘𝑘 throughput in the state?

• Too many states!
• Possible solution: Deep reinforcement learning



MPC (Model Predictive Control)

• Assumption: can predict throughput in 
short timescales

• Not always true

• When deciding the bitrate 𝑅𝑅𝑘𝑘 for chunk 𝑘𝑘:
1. Predict future throughput �̂�𝐶𝑡𝑡 𝑡𝑡∈[𝑡𝑡𝑘𝑘,𝑡𝑡𝑘𝑘+𝑁𝑁]

2. Optimize 𝑄𝑄𝑄𝑄𝑄𝑄𝑘𝑘𝑘𝑘+𝑁𝑁−1 to obtain 𝑅𝑅𝑘𝑘
3. Download chunk 𝑘𝑘 with bitrate 𝑅𝑅𝑘𝑘



Inaccurate throughput predictions

• What if the throughput predictor consistently make mistakes?
• E.g., when Internet is congested

• RobustMPC: optimizes worst-case QoE given throughput in �̂�𝐶𝑡𝑡 , �̂�𝐶𝑡𝑡



Practical Concerns

• Computational Overhead
• ILP problem may take seconds to be solved

• Deployment
• it may not be possible for video players to be bundled with the solver (CPlex

or Gorubi)

• Don’t solve a ILP online



FastMPC Idea

• Offline: Enumerate the 
state-space and solve each 
specific instance

• Online: Map stored optimal 
control decisions to current 
operation conditions



FastMPC State-space

• 𝑅𝑅𝑘𝑘−1: Previous bitrates chosen
• 𝐵𝐵𝑘𝑘: Current buffer level
• �̂�𝐶[𝑡𝑡𝑘𝑘,𝑡𝑡𝑘𝑘+𝑁𝑁]: the predicted 

throughput for the next N 
chunks 



Practical Concerns

• Huge State Space
• 100 possible values for the buffer level
• 10 possible bitrates
• A horizon of size 5 and 1000 possible throughput values
• 100 × 10 × 10005 = 1018 rows in the table! 

• Unacceptable memory cost and loading delay
• Non-trivial offline computation cost



Optimizing FastMPC Performance

• Grouping values into bins
• Use 100 bins for 1000 possible throughput values (0 ~ 999)

• (111, 278, 578, 430, 869) -> (115, 275, 575, 435, 865)

• Reduce the number of rows 



Optimizing FastMPC Performance

• Run-length encoding
• runs of data (sequences in which the same data value occurs in many 

consecutive data elements) are stored as a single data value and count
• the optimal solutions for several similar scenarios will likely be the same

• Reduce memory cost of each row
• table occupies less than 60 kB after optimization



Implementation

• Adobe OSMF framework • HTML5-based players



dash.js Overview

BufferController

Validate

AbrController

getPlaybackQuality Rule-Based
Decision Logic

• DownloadRatioRule selects bitrate based on the “download ratio”
• Download ratio: (play time of last chunk) / (its download time)

• InsufficientBufferRule chooses bitrate depending on whether the 
buffer level has reached a lower limit recently to avoid rebuffers



dash.js Modifications

BufferController

Validate

AbrController

getPlaybackQuality Rule-Based
Decision Logic

• Periodically call Validate → always call it at the start of each chunk
• Chunk download in parallel → chunk download completely sequential



dash.js Extensions

BufferController

Validate

AbrController

getPlaybackQuality Rule-Based
Decision LogicLogging

ThroughputPredictor

FastMPC

RB, BB, FESTIVE

• Harmonic mean of 
previous 20 samples



Evaluation

• Settings
• Throughput variability traces
• Video-specific parameters
• Algorithm configurations
• QoE parameters

• Performance & overhead analysis



Throughput Variability Traces (Dataset)
• Broadband Dataset (FCC)

• 6 million data points, each contains the average throughput during a 5s interval
• Concatenated to match the video length
• Randomly pick 1000 traces, average throughputs from 0-3Mbps

• Mobile Dataset (HSDPA)
• 30min of continuous 1s measurement of the avg throughput in the MOBILE environment
• Randomly pick 1000 traces

• Synthetic Dataset
• Random state 𝑆𝑆𝑡𝑡, which models the number of users sharing the link
• Gaussian throughput based on 𝑆𝑆𝑡𝑡



Video Parameters

• Envivio video
• 260s: 65 * L=4 (chunk size)
• Bitrate levels = {350, 600, 1000, 2000, 3000} kbps ~ {240p, 360p, 480p, 720p, 

1080p}
• B𝑚𝑚𝑚𝑚𝑚𝑚 = 30𝑠𝑠
• 𝑄𝑄 𝑥𝑥 = 𝐼𝐼𝑑𝑑𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝑡𝑡𝐼𝐼 𝑥𝑥 = 30𝑠𝑠
• QoE weights



Algorithms

• RB: R = [maximum available bitrate <= harmonic prediction (5 chunks)]
• BB: R = f(B)

• cushion = 10s, r = 5s
• FastMPC: 

• Look-ahead h = 5 
• Past 5 chunks for rate prediction

• MPC-OPT: perfect predictor
• 100 bins for buffer levels
• 100 bins for throughput prediction

• RobustMPC:�̂�𝐶𝑡𝑡 = �̂�𝐶𝑡𝑡
1+𝑒𝑒𝑒𝑒𝑒𝑒

• dash.js: a rule-based algorithm
• FESTIVE: a rate-based algorithm

BB algorithm baseline
Huang et al. SIGCOMM2014



Metric

• Normalized QoE:
• QoE(OPT) : offline optimal with perfect future information
• n-QoE = QoE / QoE(OPT)



Real Video Player Evaluation

• 2 computers with the same setting: client & server
• Large space to improve (avg 70% QoE(OPT))
• Rule-based method is the worst



Real Video Player Evaluation



Sensitivity Analysis: Ablations
• Throughput prediction

• Analyze general prediction err instead of a specific type (e.g. harmonic mean)

• QoE preference
• Buffer size

• RB least affected, >25s buffer affects less to all algorithms

• Start-up delay
• More delay, better rebuffering schedule

• Birate levels:
• BB&MPC: more levels, better performance
• RB: w/ increasing #levels, performance first goes up then degenerates



Overhead Analysis

• RB/BB/FastMPC: similar cpu usage
• FastMPC

• Discretization level
• Lookahead horizon



Summary & Future Work
• Summary

• RobustMPC outperforms other existing methods
• FastMPC does not show advantages in the mobile setting, but works good for other 

settings
• FastMPC implementation is efficient

• Near-zero cpu overhead & only 60kB extra memory usage
• FastMPC is more stable compared to RB/BB

• Future Work
• More advanced techniques for birate decision (e.g. NN)

Mao et al. 
SIGCOMM2017


	Control-Theoretic Approach for Dynamic Adaptive Video Streaming over HTTP
	Quality of Experience (QoE)
	Adaptive Video Player
	Bitrate Adaptation Logic
	Challenge: Many Conflicting QoE Consideration
	Extreme solutions
	Classes of Algorithms
	Paper’s Solutions/Contributions
	Control-Theoretic Model and MPC
	Previous works
	 The video streaming model: server-side
	The video streaming model: client-side
	The video streaming model: dynamics
	Multiple objectives
	Objectives combined: QoE
	QoE: Choice of function 𝑞
	QoE: Choice of parameters 𝜆,𝜇, 𝜇 𝑠 
	The QoE maximization problem
	The online QoE maximization problem
	Class of algorithms
	Candidates
	MPC (Model Predictive Control)
	Inaccurate throughput predictions
	Practical Concerns
	FastMPC Idea
	FastMPC State-space
	Practical Concerns
	Optimizing FastMPC Performance
	Optimizing FastMPC Performance
	Implementation
	dash.js Overview
	dash.js Modifications
	dash.js Extensions
	Evaluation
	Throughput Variability Traces (Dataset)
	Video Parameters
	Algorithms
	Metric
	Real Video Player Evaluation
	Real Video Player Evaluation
	Sensitivity Analysis: Ablations
	Overhead Analysis
	Summary & Future Work

