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Quality of Experience (QoE)

* Increase of video streaming traffic to Internet

 Demand for better user experience

* Metrics .
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Adaptive Video Player

* HTTP-based delivery is predominated today

e Basic DASH architecture

* Video is partitioned into chunks
Each chunk is encoded into different bitrate
Server sends manifest file with chunk information
Player uses some inputs to select bitrate level
Requested, downloaded, rendered

Throughput | ! Video Player
Predictor :

Figure 1: Abstract model of DASH players



Bitrate Adaptation Logic

* Motivation: Low QoE would lead user to leave video sessions =
negative impact on revenue for content providers

* Bitrate adaptation logic is important to optimize user experience
* Adaptive bitrate (ABR) algorithms

e Goal: to choose the bitrate level for future chunks to deliver the
highest possible QoE



Challenge: Many Conflicting QoE Consideration

* Minimizing rebuffering events

* Delivering a high playback bitrate
* Minimizing startup delay

* Keeping playback smooth



Extreme solutions

* Always pick lowest bitrate
* To minimize rebuffering events and startup delay
* Conflict with delivering high bitrate

* Always select highest bitrate
* Lead to many rebuffering events

* Goal of maintaining smooth playback

* Optimal choice may switch bitrates for every chunk to minimize rebuffering
and maximize average bitrate



Classes of Algorithms

e Rate-based algorithms
e Estimate the available network throughput to decide

* The estimation is easily to be impacted by several factors, leading inaccurate
estimation

 Network bandwidth fluctuation

» Buffer-based algorithms
e Relies on buffer occupancy as metric to select
* More stable to handle network fluctuations
* Ignoring any available throughput information

e Each approach is isolation and work under specific environmental
assumptions

* Need new approach to combine these two signals



Paper’s Solutions/Contributions

Client-side adaptation

» Offer most immediately deployable alternative compare to solutions
* Requires in-network support
* Changes in server-side software
* Modifies lower-layer transport protocols
* |s best position to detect performance issue quickly and respond to dynamics

Formulate bitrate adaptation as a stochastic optimal control problem

ProBosed Model Predictive Control (MPC) approach to solve optimization
problem

Designed a practical and fast table enumeration based algorithm, FastMPC

Deployed a low-overhead implementation based on the open source reference
video player dash.js

Validated approach with different classes of algorithms using realistic trace-driven
emulations



Control-Theoretic Model and MPC

* Previous works

* The video streaming model
* Optimization goal: QoE

* Class of algorithms

* Model predictive control



Previous works

e Lack of a uniformed evaluation

 {bitrate, smoothness, rebuffer rate,
startup delay}

 Compared separately

* Lack of a general design space
* Solely based on throughput estimation
* Solely based on buffer occupancy
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Figure 4: General framework of HT'TP adaptive video stream-

ing. The server supports multiple bitrate encodings, each a sep-

arate logically chunked file. The player issues GET requests for

each chunk at a specific bitrate and adapts the bitrate based on

the observed throughput.
J. Jiang, V. Sekar, and H. Zhang. Improving Fairness, Efficiency, and Stability in HTTP-based Adaptive
Video Streaming with FESTIVE. In Proc. CoNext, 2012.
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Figure 6: Number of rebuffers per playhour for the window for the Control and BBA-0 algorithms.
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The video streaming model: server-side

e Video stored as K consecutive
chunks 1,2, ..., K, each

* Contains L seconds of video (e.g.,
L = 4 seconds)

* Available in different bitrates (e.g.,
{350,600,1000 2000,3000} Kbps)

* Size of a chunk d,(Ry) = L - R if
assuming constant bitrate encoding

* For variable bitrate encoding, still have
di, (R;) ~ Ry, but can differ across
chunks
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The video streaming model: client-side

Connection Speed 148709 Kbps
Network Activity ' 0 KB

Buffer Health 1114s

* VVideo chunks are requested and downloaded into a playback buffer
* Contains downloaded yet unviewed video
* Maximum buffer size (in seconds): By, 45 (Bmgx = 30 seconds in the paper)

dr(Rg)
Ck

 The download time for chunk k is

* di (Ry) is the size of chunk
* C is the average throughput when downloading the chunk

* Decision: which bitrate R, to choose for the next chunk

Discussion:
What are pros/cons for client-side vs server-side decision for adaptive bitrate?




The video streaming model: dynamics

e Given Download & Wait
* L: chunk length ) Ty va—
e R. - hiiffar civoa whon ctarting Aawnlaad L 2020202020909 ©® 2 brlVmres k mmmm Rebuffer

B;.: buffer size when starting download k

R} : selected bitrate for k

dy (Ry): size of k (L - Ry, if assume CBR encoding)
Cy: average throughput when downloading k .
Aty : extra waiting time before download k + 1 e

* Inthe paper, At = ((Bk — dkéRk))Jr + L — Bmax)

N\
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* We have the buffer size when starting download k + 1

di(Ry)
d Bk+1=((Bk_ kC k) +L—Atk>
+

k 7+

* Rebuffer event happens when B;, < dkC(Rk) with rebuffer time <%§") — Bk>
k +



Multiple objectives

* Select bitrate as high as possible

- . L1 .
* Maximize average video quality E21k<=1 q(R;) for some function g(-) that
maps a bitrate to some score

* Avoid frequent or large bitrate jumps
e Minimize quality variations Y x-11q(Rx+1) — q(R)|

e Avoid rebuffer events

* Minimize total rebuffer time Y5 _, (dkéRk) — Bk)
k

+
* Minimize startup delay T
* Note that authors defined T, as the “initial buffer occupancy”



Objectives combined: QoE

QoE = %i q(Ry) — /1[{2_:1|Q(Rk+1) —q(Rp)| — .Ui <dk(Rk) - Bk) — UsTs
k=1 k=1 +

C
k=1 k

* Parameters to choose:
* Weights A, u, u,
 Quality function for bitrate: q(-)



QoE: Choice of function q

QoE = Kz q(Ry) — /12|CI(RI<+1) — q(Ry)| —#Z< k(Rk)—Bk>+

n the paper, g is chosen to be identity, i.e., g(R) =

_ .USTS

Discussion:
Consider the following three functions. Which makes more sense to you?
Or, in what scenario would you choose each one?

/ q(R) ]

q(R) ]

> R

K ;

q(R) |
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QoE: Choice of parameters A, u, us

QoE =— ZQ(RR) AZ|CI(RR+1)_Q(RR)| #Z( (Rk)—Bk) — UsTs

* In this paper
e “Balanced”: A =1,u = u, = 3000
* 1 second rebuffer/start-up delay = reducing the average bitrate by 3000 Kbps
* “Avoid instability”: A = 3, u = u, = 3000
* “Avoid rebuffering”: A =1,u = u, = 6000




The QoE maximization problem

QoE{ = KZ a(Ri0) - AZ|q(Rk+1> q(Ri)| = uE (d"(R")—Bk) — 15T

+

e Parameters:

s L © * L, ()
st trpr =tp -+ dkéRk) + Aty (7) * Input:

. kml_Atk e Chunk length L and size d(+)
O = o — e — Al /tk Ci dt, (8) * Buffer capacity B,y

* Throughput trace {C;}

Bry1 = ((Bk - dkéljk)) + L — Atk) 3 9) ° Output:
_|_

+ . .
By =T.. By €0, Bl (10) Bitrate decisions Ry, ..., Rg

* Waiting time At;, (not used in this paper)



The online QoE maximization problem

QoE{ = KZ a(Ri0) - AZ|q(Rk+1> q(Ri)| = .UZ (d"(R")—Bk) — 15T

+

e Parameters:

p g, QOFT © ¢ A ps g ()
st. tpyr =tp + dkéR‘“) + Aty (7) * |Input:

. kml_mk e Chunk length L and size d; (+)
Com / | C dt, ®) + Buffer capacity B

di () o[ Throughput trace {C,}| Unknown in advance!
Bri1 = ((Bk _ k'Okk ) + L — Atk) ) (9) o OUtpUt:
_|_

+ . .
By =T.. By €0, Bl (10) Bitrate decisions Ry, ..., Rg

* Waiting time At;, (not used in this paper)



Class of algorithms

* Rate-based: bitrate as a function of throughput

prediction

'Rk:fg

obtaine

* Buffer-based: bitrate as a function of buffer

occupancy

{C‘t}t> ,{Ri}i<k) given predictions {C,}

byat

I*t)lfoughput predictor

* Ry = f(Bi, {Ri}i<k)

e Combined:

* Ry = f(Bk: {ét}t>tkr{Ri}i<k)
* This paper: focus on f rather than throughput

predictor
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Figure 1: Abstract model of DASH players



Candidates

* PID (Proportional-integral-derivative) control:
* Used to stabilize the system, cannot directly optimize QoE
* Designed to work in continuous time and state space

 MDP-based (Markov decision process) control:
* Must assume throughput dynamics follows Markov process
* i.e., the throughput at step k + 1 depends only on the throughput at step k.

* Include last k throughput in the state?
* Too many states!
* Possible solution: Deep reinforcement learning



MPC (Model Predictive Control)

° Assumption: can predict th rough put N Algorithm 1 Video adaptation workflow using MPC
. I: Initialize
short timescales 5 for b 1o K do
e Not always true 3: if player is in startup phase then
4; (j'[tk s n]= ThroughputPred(Cy, 1,1)
* When deciding the bitrate R, for chunk k: Ri, T.) = f2L, (Rk_l,Bk,qtk,tm)
. A 6: Start playback after 7, seconds
1. Predict future throughpUt {Ct}tE[tk,tk+N] 7: else ifplayback has started then
.. — . 8: C = ThroughputPred(C'
2. Optimize QoEF™~1 to obtain Ry, b= TRIOUEHPUPTEA(CT1s 1))
. o R = frupe (Bt Bio Clo i)
3. Download chunk k with bitrate R;, 100 endif
11: Download chunk k& with bitrate R, wait till fin-
ished

12: end for




Inaccurate throughput predictions

* What if the throughput predictor consistently make mistakes?
* E.g., when Internet is congested

* RobustMPC: optimizes worst-case QoE given throughput in [C't, C't

max min QOE;:;_"N_I (15)
Ri, R4 N—-1 CtE[ét,a]
s.t. Constraints (7) to (11) (16)

THEOREM 1. The robust MPC controller is equivalent to
the regular MPC taking the lower bound of throughput as
input, namely,

Rk — frobustmpc(Rk:—la Bka [Qa ét])
— fmpc(Rk—la Bkag)



Practical Concerns

* Computational Overhead
* |LP problem may take seconds to be solved

* Deployment

* it may not be possible for video players to be bundled with the solver (CPlex
or Gorubi)

e Don’t solve a ILP online



FastMPC ldea

e Offline: Enumerate the
state-space and solve each
specific instance

* Online: Map stored optimal
control decisions to current
operation conditions

BufferLevel 20s
PrevBitrate | 3000kbps
Throughput | 3000kbps

BufferLevel 1s BufferLevel 2s

PrevBitrate | 350kbps PrevBitrate 350kbps

Throughput | 350kbps Throughput | 600kbps
A 4 A 4

Offline Enumeration

\ 4
CPLEX

Scenario BufferLevel PrevBitrate Throughput Optimal Bitrate
1 1s 350kbps 350kbps 350kbps
2 2s 350kbps 600kbps 600kbps
50,000 20s 3000kbps 3000kbps 3000kbps

£\
‘ Query Lookup

Online Bitrate Adaptation



FastMPC State-space

* R, _1: Previous bitrates chosen
* By: Current buffer level

. é[tk»tk+N]: the predicted
throughput for the next N
chunks

Algorithm 1 Video adaptation workflow using MPC

1:
2:
3:

ek

12:

= 9 XN R

Initialize
for k =1to K do
if player is in startup phase then

Clty trs n]= ThroughputPred(Cy, 4,1)

[Rk7 TS] — r;?rfpc (sz—la Bk? é[tk,tk+N])
Start playback after T's seconds
else if playback has started then

C[t Kotk N ] = ThroughputPred( C[t 1,t%] )

Rk = fmpc (Rk—17 Bka é[tk,tk-l-N])
end if

Download chunk k£ with bitrate Rj, wait till fin-
ished

end for




Practical Concerns

* Huge State Space
* 100 possible values for the buffer level
* 10 possible bitrates
* A horizon of size 5 and 1000 possible throughput values

« 100 X 10 X 1000° = 1018 rows in the table!

* Unacceptable memory cost and loading delay
* Non-trivial offline computation cost



Optimizing FastMPC Performance

* Grouping values into bins

e Use 100 bins for 1000 possible throughput values (0 ~ 999)
e (111, 278, 578, 430, 869) -> (115, 275, 575, 435, 865)

e Reduce the number of rows

Under Sampling




Optimizing FastMPC Performance

* Run-length encoding

* runs of data (sequences in which the same data value occurs in many
consecutive data elements) are stored as a single data value and count

* the optimal solutions for several similar scenarios will likely be the same
* Reduce memory cost of each row
* table occupies less than 60 kB after optimization

a a a a a a a a b b b b b b cC c

run-length encoding

=

N

a 8 b 6 c 2




Implementation

 Adobe OSMF framework * HTML5-based players

open source
media framework




dash.js Overview

BufferController AbrController

’ " getPlaybackQuality e " Dzsilsei;)iaice)gic

e DownloadRatioRule selects bitrate based on the “download ratio”
* Download ratio: (play time of last chunk) / (its download time)

* InsufficientBufferRule chooses bitrate depending on whether the
buffer level has reached a lower limit recently to avoid rebuffers



dash.js Modifications

BufferController AbrController

’ " getPlaybackQuality e " Dzsil,c)ei;)iaice)gic

* Periodically call Validate — always call it at the start of each chunk

* Chunk download in parallel = chunk download completely sequential



dash.js Extensions

BufferController AbrController

Rule-Based

Decision Logic

Logging < > getPlaybackQuality

ThroughputPredictor

FastMPC

RB, BB, FESTIVE

e Harmonic mean of
previous 20 samples



Evaluation

* Settings
* Throughput variability traces
* Video-specific parameters
* Algorithm configurations
* QoE parameters

* Performance & overhead analysis



Throughput Variability Traces (Dataset)

* Broadband Dataset (FCC)

* 6 million data points, each contains the average throughput during a 5s interval
* Concatenated to match the video length

* Randomly pick 1000 traces, average throughputs from 0-3Mbps

* Mobile Dataset (HSDPA)
* 30min of continuous 1s measurement of the avg throughput in the MOBILE environment
* Randomly pick 1000 traces

e Synthetic Dataset

* Random state S;, which models the number of users sharing the link
e Gaussian throughput based on §;
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Figure 7: Characteristics of datasets



Video Parameters

* Envivio video
e 260s: 65 * L=4 (chunk size)

 Bitrate levels = {350, 600, 1000, 2000, 3000} kbps ~ {240p, 360p, 480p, 720p,
1080p}

* Bimax = 30s
« Q(x) = Identity(x) = 30s
* QoE weights



Algorithms

* RB: R = [maximum available bitrate <= harmonic prediction (5 chunks)]

* BB: R = f(B)
e cushion=10s, r =5s
* FastMPC:

 Look-ahead h=5

e Past 5 chunks for rate prediction
 MPC-OPT: perfect predictor
e 100 bins for buffer levels

* 100 bins for throughput prediction
A C
* RobustMPC:C, = —

14+err
e dash.js: a rule-based algorithm

 FESTIVE: a rate-based algorithm

Boundary of the safe area

] I upper
FesServolr cushion "iSlEll‘-.'l:ll B
| § H -] 3 "nﬂl
B B, B Bro1 B Buffer

Oocupancy

BB algorithm baseline
Huang et al. SIGCOMM2014



Metric

* Normalized QoE:

* QoE(OPT) : offline optimal with perfect future information
* n-QoE = QoE / QoE(OPT)



Real Video Player Evaluation

* 2 computers with the same setting: client & server

* Large space to improve (avg 70% QoE(OPT))

 Rule-based method is the worst
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Real Video Player Evaluation
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Sensitivity Analysis: Ablations

* Throughput prediction
* Analyze general prediction err instead of a specific type (e.g. harmonic mean)

* QOE preference

e Buffer size
* RB least affected, >25s buffer affects less to all algorithms

* Start-up delay
* More delay, better rebuffering schedule

* Birate levels:
 BB&MPC: more levels, better performance
* RB: w/ increasing ttlevels, performance first goes up then degenerates
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Figure 11: Sensitivity analysis vs. operating conditions



Overhead Analysis

* RB/BB/FastMPC: similar cpu usage
* FastMPC

e Discretization level
 Lookahead horizon

I FastMPC + Perfect Prediction 0.95
B FasihPC + Harmonic Mean

1 0.94f
Extra JavaScript code size 0.0l
. . . 0.af :
Discretization levels g 11 able Run len oth coding W 0001
0.6

50 25.0kB 19.1 kB 8 § 0.91}

100 100 kB 56.4 kB - o4f ool . ]

200 400KB  141kB g e 1o

500 2.50 MB 451 kB ' e - - MPC, Error = 20% |

0 0.88-
Table 1: FastMPC table size ° FasﬂL'uF’G Discsrgtizatinrﬁguals 500 2 3 Leolihhegd Hnrigon [cgunh} 8

(a) Discretization (b) Look-ahead horizon



Summary & Future Work

* Summary

* RobustMPC outperforms other existing methods

* FastMPC does not show advantages in the mobile setting, but works good for other
settings

* FastMPC implementation is efficient
* Near-zero cpu overhead & only 60kB extra memory usage

* FastMPC is more stable compared to RB/BB

* Future Work
 More advanced techniques for birate decision (e.g. NN)

QoE metric

| Reward

bandwidth

ABR agent Neural Network bitrates

oo

T Client-side network and video player measurements

Mao et al.
SIGCOMM_2017

state
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