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Quality of Experience (QoE)

• Increase of video streaming traffic to Internet 
• Demand for better user experience
• Metrics

• Startup delay
• Duration of rebuffering
• Average playback bitrate
• Variability of bitrate delivery
• Rendering quality

Image Credit: F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. A. Joseph, A. Ganjam, J. Zhan, and H. Zhang. Understanding the Impact of Video 
Quality on User Engagement. In Proc. ACM SIGCOMM, 2011.



Adaptive Video Player

• HTTP-based delivery is predominated today
• Basic DASH architecture

• Video is partitioned into chunks
• Each chunk is encoded into different bitrate
• Server sends manifest file with chunk information
• Player uses some inputs to select bitrate level
• Requested, downloaded, rendered



Bitrate Adaptation Logic

• Motivation: Low QoE would lead user to leave video sessions → 
negative impact on revenue for content providers

• Bitrate adaptation logic is important to optimize user experience
• Adaptive bitrate (ABR) algorithms

• Goal: to choose the bitrate level for future chunks to deliver the 
highest possible QoE



Challenge: Many Conflicting QoE Consideration

• Minimizing rebuffering events
• Delivering a high playback bitrate
• Minimizing startup delay
• Keeping playback smooth



Extreme solutions

• Always pick lowest bitrate
• To minimize rebuffering events and startup delay
• Conflict with delivering high bitrate

• Always select highest bitrate
• Lead to many rebuffering events

• Goal of maintaining smooth playback
• Optimal choice may switch bitrates for every chunk to minimize rebuffering 

and maximize average bitrate



Classes of Algorithms

• Rate-based algorithms
• Estimate the available network throughput to decide
• The estimation is easily to be impacted by several factors, leading inaccurate 

estimation
• Network bandwidth fluctuation

• Buffer-based algorithms
• Relies on buffer occupancy as metric to select
• More stable to handle network fluctuations
• Ignoring any available throughput information

• Each approach is isolation and work under specific environmental 
assumptions

• Need new approach to combine these two signals



Paper’s Solutions/Contributions

• Client-side adaptation
• Offer most immediately deployable alternative compare to solutions

• Requires in-network support
• Changes in server-side software
• Modifies lower-layer transport protocols

• Is best position to detect performance issue quickly and respond to dynamics
• Formulate bitrate adaptation as a stochastic optimal control problem
• Proposed Model Predictive Control (MPC) approach to solve optimization 

problem
• Designed a practical and fast table enumeration based algorithm, FastMPC
• Deployed a low-overhead implementation based on the open source reference 

video player dash.js
• Validated approach with different classes of algorithms using realistic trace-driven 

emulations



Control-Theoretic Model and MPC

• Previous works
• The video streaming model
• Optimization goal: QoE
• Class of algorithms
• Model predictive control



Previous works
• Lack of a uniformed evaluation

• {bitrate, smoothness, rebuffer rate, 
startup delay}

• Compared separately

• Lack of a general design space
• Solely based on throughput estimation
• Solely based on buffer occupancy

J. Jiang, V. Sekar, and H. Zhang. Improving Fairness, Efficiency, and Stability in HTTP-based Adaptive 
Video Streaming with FESTIVE. In Proc. CoNext, 2012.

T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. A Buffer-Based Approach to Rate 
Adaptation: Evidence from a Large Video Streaming Service. In Proc. ACM SIGCOMM, 2014.

T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. A Buffer-Based Approach to Rate 
Adaptation: Evidence from a Large Video Streaming Service. In Proc. ACM SIGCOMM, 2014.



The video streaming model: server-side

• Video stored as 𝐾𝐾 consecutive 
chunks 1,2, … ,𝐾𝐾, each 

• Contains 𝐿𝐿 seconds of video (e.g., 
𝐿𝐿 = 4 seconds)

• Available in different bitrates (e.g., 
{350, 600, 1000 2000, 3000} Kbps)

• Size of a chunk 𝑑𝑑𝑘𝑘 𝑅𝑅𝑘𝑘 = 𝐿𝐿 ⋅ 𝑅𝑅𝑘𝑘 if 
assuming constant bitrate encoding

• For variable bitrate encoding, still have 
𝑑𝑑𝑘𝑘 𝑅𝑅𝑘𝑘 ∼ 𝑅𝑅𝑘𝑘, but can differ across 
chunks

https://streaminglearningcenter.com/wp-content/uploads/2021/05/abr_stream_4.png

https://www.videoconverterfactory.com/tips/imgs-self/vbr-vs-cbr/vbr-vs-cbr-1.jpg



The video streaming model: client-side

• Video chunks are requested and downloaded into a playback buffer
• Contains downloaded yet unviewed video
• Maximum buffer size (in seconds): 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 (𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 = 30 seconds in the paper)

• The download time for chunk 𝑘𝑘 is 𝑑𝑑𝑘𝑘(𝑅𝑅𝑘𝑘)
𝐶𝐶𝑘𝑘

• 𝑑𝑑𝑘𝑘(𝑅𝑅𝑘𝑘) is the size of chunk
• 𝐶𝐶𝑘𝑘 is the average throughput when downloading the chunk

• Decision: which bitrate 𝑅𝑅𝑘𝑘 to choose for the next chunk
• Also can decide the waiting time Δ𝑡𝑡𝑘𝑘 before downloading the next chunk 

(only used when buffer is full in the paper)
• Server can also “guide” client what bitrate to choose

Discussion: 
What are pros/cons for client-side vs server-side decision for adaptive bitrate?



The video streaming model: dynamics
• Given

• 𝐿𝐿: chunk length
• 𝐵𝐵𝑘𝑘: buffer size when starting download 𝑘𝑘
• 𝑅𝑅𝑘𝑘: selected bitrate for 𝑘𝑘
• 𝑑𝑑𝑘𝑘(𝑅𝑅𝑘𝑘): size of 𝑘𝑘 (𝐿𝐿 ⋅ 𝑅𝑅𝑘𝑘 if assume CBR encoding)
• 𝐶𝐶𝑘𝑘: average throughput when downloading 𝑘𝑘
• Δ𝑡𝑡𝑘𝑘: extra waiting time before download 𝑘𝑘 + 1

• In the paper, Δ𝑡𝑡𝑘𝑘 = 𝐵𝐵𝑘𝑘 −
𝑑𝑑𝑘𝑘 𝑅𝑅𝑘𝑘
𝐶𝐶𝑘𝑘 +

+ 𝐿𝐿 − 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚
+

• We have the buffer size when starting download 𝑘𝑘 + 1

• 𝐵𝐵𝑘𝑘+1 = 𝐵𝐵𝑘𝑘 −
𝑑𝑑𝑘𝑘 𝑅𝑅𝑘𝑘
𝐶𝐶𝑘𝑘 +

+ 𝐿𝐿 − Δ𝑡𝑡𝑘𝑘
+

• Rebuffer event happens when 𝐵𝐵𝑘𝑘 < 𝑑𝑑𝑘𝑘 𝑅𝑅𝑘𝑘
𝐶𝐶𝑘𝑘

with rebuffer time 𝑑𝑑𝑘𝑘 𝑅𝑅𝑘𝑘
𝐶𝐶𝑘𝑘

− 𝐵𝐵𝑘𝑘
+



Multiple objectives

• Select bitrate as high as possible
• Maximize average video quality 1

𝐾𝐾
∑𝑘𝑘=1𝐾𝐾 𝑞𝑞(𝑅𝑅𝑘𝑘) for some function 𝑞𝑞(⋅) that 

maps a bitrate to some score

• Avoid frequent or large bitrate jumps
• Minimize quality variations ∑𝑘𝑘=1𝐾𝐾−1 𝑞𝑞 𝑅𝑅𝑘𝑘+1 − 𝑞𝑞 𝑅𝑅𝑘𝑘

• Avoid rebuffer events
• Minimize total rebuffer time ∑𝑘𝑘=1𝐾𝐾 𝑑𝑑𝑘𝑘 𝑅𝑅𝑘𝑘

𝐶𝐶𝑘𝑘
− 𝐵𝐵𝑘𝑘

+

• Minimize startup delay 𝑇𝑇𝑠𝑠
• Note that authors defined 𝑇𝑇𝑠𝑠 as the “initial buffer occupancy”



Objectives combined: QoE

• Parameters to choose:
• Weights 𝜆𝜆, 𝜇𝜇, 𝜇𝜇𝑠𝑠
• Quality function for bitrate: 𝑞𝑞(⋅)
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+
− 𝜇𝜇𝑠𝑠𝑇𝑇𝑠𝑠



QoE: Choice of function 𝑞𝑞

• In the paper, 𝑞𝑞 is chosen to be identity, i.e., 𝑞𝑞 𝑅𝑅 = 𝑅𝑅
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Discussion:
Consider the following three functions. Which makes more sense to you?
Or, in what scenario would you choose each one?

𝑅𝑅

𝑞𝑞 𝑅𝑅 𝑞𝑞 𝑅𝑅

𝑅𝑅 𝑅𝑅

𝑞𝑞 𝑅𝑅



QoE: Choice of parameters 𝜆𝜆, 𝜇𝜇, 𝜇𝜇𝑠𝑠

• In this paper
• “Balanced”: 𝜆𝜆 = 1,𝜇𝜇 = 𝜇𝜇𝑠𝑠 = 3000

• 1 second rebuffer/start-up delay = reducing the average bitrate by 3000 Kbps
• “Avoid instability”: 𝜆𝜆 = 3,𝜇𝜇 = 𝜇𝜇𝑠𝑠 = 3000
• “Avoid rebuffering”: 𝜆𝜆 = 1, 𝜇𝜇 = 𝜇𝜇𝑠𝑠 = 6000
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The QoE maximization problem

• Parameters:
• 𝜆𝜆, 𝜇𝜇, 𝜇𝜇𝑠𝑠, 𝑞𝑞(⋅)

• Input:
• Chunk length 𝐿𝐿 and size 𝑑𝑑𝑘𝑘 ⋅
• Buffer capacity 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚
• Throughput trace {𝐶𝐶𝑡𝑡}

• Output:
• Bitrate decisions 𝑅𝑅1, … ,𝑅𝑅𝐾𝐾
• Startup delay 𝑇𝑇𝑠𝑠
• Waiting time Δ𝑡𝑡𝑘𝑘 (not used in this paper)
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The online QoE maximization problem

• Parameters:
• 𝜆𝜆, 𝜇𝜇, 𝜇𝜇𝑠𝑠, 𝑞𝑞(⋅)

• Input:
• Chunk length 𝐿𝐿 and size 𝑑𝑑𝑘𝑘 ⋅
• Buffer capacity 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚
• Throughput trace {𝐶𝐶𝑡𝑡}

• Output:
• Bitrate decisions 𝑅𝑅1, … ,𝑅𝑅𝐾𝐾
• Startup delay 𝑇𝑇𝑠𝑠
• Waiting time Δ𝑡𝑡𝑘𝑘 (not used in this paper)

𝑄𝑄𝑄𝑄𝑄𝑄1𝐾𝐾 =
1
𝐾𝐾
�
𝑘𝑘=1

𝐾𝐾

𝑞𝑞(𝑅𝑅𝑘𝑘) − 𝜆𝜆�
𝑘𝑘=1

𝐾𝐾−1

𝑞𝑞 𝑅𝑅𝑘𝑘+1 − 𝑞𝑞 𝑅𝑅𝑘𝑘 − 𝜇𝜇�
𝑘𝑘=1

𝐾𝐾
𝑑𝑑𝑘𝑘 𝑅𝑅𝑘𝑘
𝐶𝐶𝑘𝑘

− 𝐵𝐵𝑘𝑘
+
− 𝜇𝜇𝑠𝑠𝑇𝑇𝑠𝑠

Unknown in advance!



Class of algorithms

• Rate-based: bitrate as a function of throughput 
prediction

• 𝑅𝑅𝑘𝑘 = 𝑓𝑓 �̂�𝐶𝑡𝑡 𝑡𝑡>𝑡𝑡𝑘𝑘
, 𝑅𝑅𝑖𝑖 𝑖𝑖<𝑘𝑘 given predictions �̂�𝐶𝑡𝑡 𝑡𝑡>𝑡𝑡𝑘𝑘obtained by a throughput predictor 

• Buffer-based: bitrate as a function of buffer 
occupancy

• 𝑅𝑅𝑘𝑘 = 𝑓𝑓 𝐵𝐵𝑘𝑘 , {𝑅𝑅𝑖𝑖 𝑖𝑖<𝑘𝑘)
• Combined:

• 𝑅𝑅𝑘𝑘 = 𝑓𝑓 𝐵𝐵𝑘𝑘 , �̂�𝐶𝑡𝑡 𝑡𝑡>𝑡𝑡𝑘𝑘
, 𝑅𝑅𝑖𝑖 𝑖𝑖<𝑘𝑘

• This paper: focus on 𝑓𝑓 rather than throughput 
predictor



Candidates

• PID (Proportional-integral-derivative) control:
• Used to stabilize the system, cannot directly optimize QoE
• Designed to work in continuous time and state space

• MDP-based (Markov decision process) control:
• Must assume throughput dynamics follows Markov process

• i.e., the throughput at step 𝑘𝑘 + 1 depends only on the throughput at step 𝑘𝑘.
• Include last 𝑘𝑘 throughput in the state?

• Too many states!
• Possible solution: Deep reinforcement learning



MPC (Model Predictive Control)

• Assumption: can predict throughput in 
short timescales

• Not always true

• When deciding the bitrate 𝑅𝑅𝑘𝑘 for chunk 𝑘𝑘:
1. Predict future throughput �̂�𝐶𝑡𝑡 𝑡𝑡∈[𝑡𝑡𝑘𝑘,𝑡𝑡𝑘𝑘+𝑁𝑁]

2. Optimize 𝑄𝑄𝑄𝑄𝑄𝑄𝑘𝑘𝑘𝑘+𝑁𝑁−1 to obtain 𝑅𝑅𝑘𝑘
3. Download chunk 𝑘𝑘 with bitrate 𝑅𝑅𝑘𝑘



Inaccurate throughput predictions

• What if the throughput predictor consistently make mistakes?
• E.g., when Internet is congested

• RobustMPC: optimizes worst-case QoE given throughput in �̂�𝐶𝑡𝑡 , �̂�𝐶𝑡𝑡



Practical Concerns

• Computational Overhead
• ILP problem may take seconds to be solved

• Deployment
• it may not be possible for video players to be bundled with the solver (CPlex

or Gorubi)

• Don’t solve a ILP online



FastMPC Idea

• Offline: Enumerate the 
state-space and solve each 
specific instance

• Online: Map stored optimal 
control decisions to current 
operation conditions



FastMPC State-space

• 𝑅𝑅𝑘𝑘−1: Previous bitrates chosen
• 𝐵𝐵𝑘𝑘: Current buffer level
• �̂�𝐶[𝑡𝑡𝑘𝑘,𝑡𝑡𝑘𝑘+𝑁𝑁]: the predicted 

throughput for the next N 
chunks 



Practical Concerns

• Huge State Space
• 100 possible values for the buffer level
• 10 possible bitrates
• A horizon of size 5 and 1000 possible throughput values
• 100 × 10 × 10005 = 1018 rows in the table! 

• Unacceptable memory cost and loading delay
• Non-trivial offline computation cost



Optimizing FastMPC Performance

• Grouping values into bins
• Use 100 bins for 1000 possible throughput values (0 ~ 999)

• (111, 278, 578, 430, 869) -> (115, 275, 575, 435, 865)

• Reduce the number of rows 



Optimizing FastMPC Performance

• Run-length encoding
• runs of data (sequences in which the same data value occurs in many 

consecutive data elements) are stored as a single data value and count
• the optimal solutions for several similar scenarios will likely be the same

• Reduce memory cost of each row
• table occupies less than 60 kB after optimization



Implementation

• Adobe OSMF framework • HTML5-based players



dash.js Overview

BufferController

Validate

AbrController

getPlaybackQuality Rule-Based
Decision Logic

• DownloadRatioRule selects bitrate based on the “download ratio”
• Download ratio: (play time of last chunk) / (its download time)

• InsufficientBufferRule chooses bitrate depending on whether the 
buffer level has reached a lower limit recently to avoid rebuffers



dash.js Modifications

BufferController

Validate

AbrController

getPlaybackQuality Rule-Based
Decision Logic

• Periodically call Validate → always call it at the start of each chunk
• Chunk download in parallel → chunk download completely sequential



dash.js Extensions

BufferController

Validate

AbrController

getPlaybackQuality Rule-Based
Decision LogicLogging

ThroughputPredictor

FastMPC

RB, BB, FESTIVE

• Harmonic mean of 
previous 20 samples



Evaluation

• Settings
• Throughput variability traces
• Video-specific parameters
• Algorithm configurations
• QoE parameters

• Performance & overhead analysis



Throughput Variability Traces (Dataset)
• Broadband Dataset (FCC)

• 6 million data points, each contains the average throughput during a 5s interval
• Concatenated to match the video length
• Randomly pick 1000 traces, average throughputs from 0-3Mbps

• Mobile Dataset (HSDPA)
• 30min of continuous 1s measurement of the avg throughput in the MOBILE environment
• Randomly pick 1000 traces

• Synthetic Dataset
• Random state 𝑆𝑆𝑡𝑡, which models the number of users sharing the link
• Gaussian throughput based on 𝑆𝑆𝑡𝑡



Video Parameters

• Envivio video
• 260s: 65 * L=4 (chunk size)
• Bitrate levels = {350, 600, 1000, 2000, 3000} kbps ~ {240p, 360p, 480p, 720p, 

1080p}
• B𝑚𝑚𝑚𝑚𝑚𝑚 = 30𝑠𝑠
• 𝑄𝑄 𝑥𝑥 = 𝐼𝐼𝑑𝑑𝐼𝐼𝐼𝐼𝑡𝑡𝐼𝐼𝑡𝑡𝐼𝐼 𝑥𝑥 = 30𝑠𝑠
• QoE weights



Algorithms

• RB: R = [maximum available bitrate <= harmonic prediction (5 chunks)]
• BB: R = f(B)

• cushion = 10s, r = 5s
• FastMPC: 

• Look-ahead h = 5 
• Past 5 chunks for rate prediction

• MPC-OPT: perfect predictor
• 100 bins for buffer levels
• 100 bins for throughput prediction

• RobustMPC:�̂�𝐶𝑡𝑡 = �̂�𝐶𝑡𝑡
1+𝑒𝑒𝑒𝑒𝑒𝑒

• dash.js: a rule-based algorithm
• FESTIVE: a rate-based algorithm

BB algorithm baseline
Huang et al. SIGCOMM2014



Metric

• Normalized QoE:
• QoE(OPT) : offline optimal with perfect future information
• n-QoE = QoE / QoE(OPT)



Real Video Player Evaluation

• 2 computers with the same setting: client & server
• Large space to improve (avg 70% QoE(OPT))
• Rule-based method is the worst



Real Video Player Evaluation



Sensitivity Analysis: Ablations
• Throughput prediction

• Analyze general prediction err instead of a specific type (e.g. harmonic mean)

• QoE preference
• Buffer size

• RB least affected, >25s buffer affects less to all algorithms

• Start-up delay
• More delay, better rebuffering schedule

• Birate levels:
• BB&MPC: more levels, better performance
• RB: w/ increasing #levels, performance first goes up then degenerates



Overhead Analysis

• RB/BB/FastMPC: similar cpu usage
• FastMPC

• Discretization level
• Lookahead horizon



Summary & Future Work
• Summary

• RobustMPC outperforms other existing methods
• FastMPC does not show advantages in the mobile setting, but works good for other 

settings
• FastMPC implementation is efficient

• Near-zero cpu overhead & only 60kB extra memory usage
• FastMPC is more stable compared to RB/BB

• Future Work
• More advanced techniques for birate decision (e.g. NN)

Mao et al. 
SIGCOMM2017
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