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Separates from data plane via open interface (e.g., Openflow)

Forwards packets through router

Openflow is based on the match-action approach

1. Match (subset of) packet headers to fixed headers in table
2. Matched entry specifies fixed action(s) to apply to packet

Match-action tables are implemented with switch chips for speed



Abstracting Matching Semantics

Single Match Table

e Single table that stores every combination of headers
e Wasteful

o  Header behaviors might be orthogonal
o  What if a match on the first header determines a disjoint set of values to match on second header?
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Multiple Match Table (a refinement of SMT)

e Smaller match tables arranged into pipeline of stages
e Processing at current stage dependent on processing at previous stages

e Existing switch chips implement a small number of tables, but...
o  Table width, depth, and execution order are fixed
o  Often limited set of common actions (OpenFlow specifies a subset of these)
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Benefits: Control plane is programmable

Limitations: Data plane is not programmable.

Discussion question: What causes this limitation?
Why would we want programmability here?




SDN with OpenFlow

Benefits: Control plane is programmable

Limitations: Data plane is not programmable.

Discussion question: What causes this limitation?
Why would we want programmability here?

Possible answer:

e Source of limitation: current switch hardware + OpenFlow
o  Match-action processing is on fixed set of fields
o  Openflow limits packet processing actions

e What if you want the flexibility to...
o Add new headers (and match on them)
o Add new actions
o  Tune table sizes to optimize for network
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Can we build a programmable switch (1) at a reasonable cost (2) without
sacrificing speed?



Motivating Question

Can we build a programmable switch (1) at a reasonable cost (2) without
sacrificing speed?

Reconfigurable Match Table (RMT)

e Use pipeline of match-action tables (like in MMT)
e More flexibility

o Add new headers (and match on them)
o Define new actions
o  Configure number, topology, width, and depth of match tables



RMT Architecture

Techniques for flexibility:

Programmable parser and deparser
Match stage unit RAM configurability

Ingress/egress resource sharing

Allows multiple tables per stage



RMT Architecture
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(a) RMT model as a sequence of logical Match-Action stages.



Programmable parser

e Can be configured with any

o header fields and
o header orders

e OQutputs a packet header vector
o aset of header fields such as IP dest, Ethernet dest, etc

e Allow field definitions to be modified or added
e Programmable deparser recombines the modified header fields
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Match tables

The match-action pipeline consists of a series
of tables of programmable dimensions

Each table is one stage of the pipeline
Resources are shared across all stages
and can be allocated flexibly:

o Issues:

o Large number of physical stages inflates
power requirements
o Conflates processing and memory
allocation
m  Alogical stage that requires more
processing get allocated 2 physical
stages, but it gets 2x memory even
though it may not need it =>
potential resource waste!
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(b) Flexible match table configuration.




Action

e Input selector picks the fields to be
matched upon, and VLIW—Very long
instruction word— modifies

o  Operate on all fields in the header vector
concurrently

e An action unit for each field F in the
header vector
o  Input: up to 3 arguments, including
fields in the header vector, the action
data results of the match
o  Qutput: rewrite F.

e Theingress and egress side separated by
a switching fabric, but this distinction is
mainly logical rather than physical.
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(c) VLIW action architecture.




RMT Architecture Pros and Cons

Pros:

Factoring states leads to better

abstraction
o  Developers can write programs
with a reasonably general “mental
model” of what the switch looks
like
o Programming language like P4
Minimize resource waste
Layout optimality
More actions than OpenFlow

Cons:
e Power consumption +15%
e Conflates processing and memory
e Match restrictions
o N=32?

Packet header limits

Action restrictions
e Still not Turing-complete



Use cases for RMT

e Two main use cases that we should highlight:
o L2/L3 switch.
o RCP and ACL support.



Case 1: L2/L3 switch

e Switching at either the Layer 2 level or the Layer 3 level.
o The parser, match tables, and the action tables need configuration.
o Memory: Ethertype table in stage 1, other tables spread out to maximize size.
o Upon configuration, the control plane can start populating each table.
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Case 2: RCP and ACL support

e Rate Control Protocol (RCP) and Access Control List (ACL) for firewalls.
o RCP indicates explicitly fair-share rate to flows; stamped into RCP header.
o 20K ACL entries (each 120b wide) created along with RAM entries to hold
associated actions, last 2 stages.
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Chip Design

e 1GHz operating frequency lets a single pipeline process all input port data.

e Parsers accept packets, individual fields are moved from various locations to fixed
locations in a 4 Kb packet header vector. Results are multiplexed into a single
stream.

e (Queuing system associated with common data buffer.

e KEgress and ingress pipelines share same match tables -> minimizes cost.
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Figure 3: Switch chip architecture.



Chip Design: Configurable Parser

e Parser: turns incoming packet data into 4k sized packet header vector.
e The result of a TCAM match triggers an action.

o Updates parser state.

o  Shifts incoming data.

o Directs fields in input packet to final output packet fixed positions.
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Figure 4: Programmable parser model.



Chip Design: Configurable Match Memories

e FEach match stage has two wide match units: a TCAM for ternary matches and an
SRAM-based hash table for exact matches.
e Ingress, egress match pipelines are the same block! Uses a crossbar.
o Packet headers shared between input, output vectors: ownership configured
to be either ingress or egress thread.
o Function units per field allocated in the same way to ingress / egress.
o Each memory block only allocated to either ingress / egress.
e Chip stores packet and byte statistics counters for each flow table entry.
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Chip Design: Configurable Action Engine

e Separate processing unit provided for each packet header field.

e OpenFlow specifies simple actions and complex operations; complex ones have to
be flattened into single-cycle operations.

e Enumeration of a subset of instructions:

Category Description

logical and, or, xor, not, ...
shadd/sub signed or unsigned shift

arith inc, dec, min, max
deposit-byte any length, source & dest offset

rot-mask-merge IPv4 <> IPv6 translation uses
bitmasked-set S1&S2 | S1&S5 ; metadata uses

move if E S1— D
cond-move if V5,&Vs, S1 = D
cond-mux if Vg, S2 > D else if Vs, S1 = D

Table 1: Partial action instruction set.
(S; means source i; V; means z is valid.)



Chip Design: Other Notable Features

e Latencies reduced by dependency analysis.

e Multicast and ECMP processing is split between ingress and egress.

e Meters measure and classify flow rates of matching table entries, which are then
potentially used to modify or drop incoming packets.

e Version IDs flow through pipeline with each packet, allowing for version
compatibility to be checked for in matches. -
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(a) Match dependency.
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(b) Action dependency.
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(c) No dependency or successor dependency.

Figure 5: Match stage dependencies.
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Cost Comparison

How does the proposed RMT design compare to a conventional switch chip?

Programmable parser:
e Uses 256 x 40 bit TCAM and 256 x 128 bit action RAM

e 5.6 million gates (in comparison to 2.9 - 3 million for conventional design)
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Cost Comparison

How does the proposed RMT design compare to a conventional switch chip?
Memory costs:
e Memory technology
o Extra cost incurred by hash table, TCAMs
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How does the proposed RMT design compare to a conventional switch chip?

Memory costs:

e Action specification

o Flow entries have overhead bits
for a pointer to action memory,

action size, etc. 2) b)
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O Amount Of Overhead varies in [ stats =] : stats orbinary match [ : Unused
different configurations of Case MatchWidth Match Action Stats Relative
a1 80 32 48 25 1.000x
memory blocks az 160 52 34 18 1.625x
as 320 72 22 12 2.250x
b 640 80 12 7 2.500x
c1 80 62 4 40 1.900x

c2 80 102 4 0 3.250x
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Cost Comparison

How does the proposed RMT design compare to a conventional switch chip?

Memory costs:
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Cost Comparison

How does the proposed RMT design compare to a conventional switch chip?

Area and power costs:

e Large match table capacity contributes substantially to chip area estimates

Section Area, Cost
10, buffer, queue, CPU, etc 37.0% 0.0%
Match memory & logic 54.3% 8.0%
VLIW action engine 7.4% 5.5%
Parser + deparser 1.3% 0.7%

Total extra cost: 14.2%



Cost Comparison

How does the proposed RMT design compare to a conventional switch chip?

Area and power costs:

e Increased memory bitcount and increased functionality of match-action pipeline

dissipates more power

Section Power Cost
/0 26.0%  0.0%
Memory leakage 43.7% 4.0%
Logic leakage 7.3% 2.5%
RAM active 2.7% 0.4%
TCAM active 3.5% 0.0%
Logic active 16.8% 5.5%

Total extra cost: 12.4%
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e Discussion question: What are the long-term benefits of programmable switches?



Summary

e Discussion question: What are the long-term benefits of programmable switches?
e This paper’s main contributions:

o Describes RMT switch architecture

o Proves that this architecture is realizable on proposed chip design

o Greatly increased flexibility is possible at a cost of less than 15% increase

in area and power consumption of the chip!



Follow-Up Work

e RMT commercialized in Tofino switch by Barefoot Networks
e P4 isa standard language used for different programmable switching devices
e dRMT disaggregates the memory and compute resources of the switch

e Ongoing research still pushing the boundaries on leveraging the flexibility of RMT



