
Forwarding Metamorphosis:
Fast Programmable Match-Action
Processing in Hardware for SDN

Presenters: Simran Kaur, Clover Zheng, Tamjeed Azad, Cindy Zhang

Recap: Software Defined Network (SDN)

Separates control plane from data plane via open interface (e.g., Openflow)
Makes routing decisions Forwards packets through router

Recap: Software Defined Network (SDN)

Separates control plane from data plane via open interface (e.g., Openflow)

Openflow is based on the match-action approach

1. Match (subset of) packet headers to fixed headers in table
2. Matched entry specifies fixed action(s) to apply to packet

Match-action tables are implemented with switch chips for speed

Makes routing decisions Forwards packets through router

Abstracting Matching Semantics

Single Match Table

● Single table that stores every combination of headers
● Wasteful

○ Header behaviors might be orthogonal
○ What if a match on the first header determines a disjoint set of values to match on second header?

Multiple Match Table (a refinement of SMT)

● Smaller match tables arranged into pipeline of stages
● Processing at current stage dependent on processing at previous stages
● Existing switch chips implement a small number of tables, but…

○ Table width, depth, and execution order are fixed
○ Offer limited set of common actions (OpenFlow specifies a subset of these)

Abstracting Matching Semantics

Single Match Table

● Single table that stores every combination of headers
● Wasteful

○ Header behaviors might be orthogonal
○ What if a match on the first header determines a disjoint set of values to match on second header?

Multiple Match Table (a refinement of SMT)

● Smaller match tables arranged into pipeline of stages
● Processing at current stage dependent on processing at previous stages
● Existing switch chips implement a small number of tables, but…

○ Table width, depth, and execution order are fixed
○ Often limited set of common actions (OpenFlow specifies a subset of these)

SDN with OpenFlow

Benefits: Control plane is programmable

Limitations: Data plane is not programmable.

Discussion question: What causes this limitation?
 Why would we want programmability here?
Hint: think about what you might want to change in a network

Possible answer:
● Source of limitation: current switch hardware + OpenFlow

○ Match-action processing is on fixed set of fields
○ Openflow limits packet processing actions

● What if you want the flexibility to…
○ Add new headers (and match on them)
○ Add new actions
○ Tune table sizes to optimize for network

SDN with OpenFlow

Benefits: Control plane is programmable

Limitations: Data plane is not programmable.

Discussion question: What causes this limitation?
 Why would we want programmability here?
Hint: think about what you might want to change in a network

Possible answer:
● Source of limitation: current switch hardware + OpenFlow

○ Match-action processing is on fixed set of fields
○ Openflow limits packet processing actions

● What if you want the flexibility to…
○ Add new headers (and match on them)
○ Add new actions
○ Tune table sizes to optimize for network

Motivating Question

Can we build a programmable switch (1) at a reasonable cost (2) without
sacrificing speed?

Motivating Question

Can we build a programmable switch (1) at a reasonable cost (2) without
sacrificing speed?

Reconfigurable Match Table (RMT)

● Use pipeline of match-action tables (like in MMT)
● More flexibility

○ Add new headers (and match on them)
○ Define new actions
○ Configure number, topology, width, and depth of match tables

RMT Architecture

Techniques for flexibility:

● Programmable parser and deparser

● Match stage unit RAM configurability

● Ingress/egress resource sharing

● Allows multiple tables per stage

RMT Architecture

Parser Match-Action Stages Deparser+output queues

Programmable parser

● Can be configured with any
○ header fields and
○ header orders

● Outputs a packet header vector
○ a set of header fields such as IP dest, Ethernet dest, etc

● Allow field definitions to be modified or added
● Programmable deparser recombines the modified header fields

Match tables
The match-action pipeline consists of a series
of tables of programmable dimensions

● Each table is one stage of the pipeline
● Resources are shared across all stages

and can be allocated flexibly:
○ more memory can be assigned with

multiple contiguous physical stages
○ IP forwarding: 256K 32-bit prefixes
○ Ethernet: 64K 48-bit addresses

Match tables
The match-action pipeline consists of a series
of tables of programmable dimensions

● Each table is one stage of the pipeline
● Resources are shared across all stages

and can be allocated flexibly:
● Issues:

○ Large number of physical stages inflates
power requirements

○ Conflates processing and memory
allocation
■ A logical stage that requires more

processing get allocated 2 physical
stages, but it gets 2x memory even
though it may not need it =>
potential resource waste!

Action

● Input selector picks the fields to be
matched upon, and VLIW–Very long
instruction word– modifies
○ Operate on all fields in the header vector

concurrently
● An action unit for each field F in the

header vector
○ Input: up to 3 arguments, including

fields in the header vector, the action
data results of the match

○ Output: rewrite F.
● The ingress and egress side separated by

a switching fabric, but this distinction is
mainly logical rather than physical.

RMT Architecture Pros and Cons

Pros:

● Factoring states leads to better
abstraction
○ Developers can write programs

with a reasonably general “mental
model” of what the switch looks
like

○ Programming language like P4

● Minimize resource waste
● Layout optimality
● More actions than OpenFlow

Cons:

● Power consumption +15%
● Conflates processing and memory
● Match restrictions

○ N=32?
● Packet header limits
● Action restrictions
● Still not Turing-complete

Use cases for RMT

● Two main use cases that we should highlight:
○ L2/L3 switch.
○ RCP and ACL support.

Case 1: L2/L3 switch

● Switching at either the Layer 2 level or the Layer 3 level.
○ The parser, match tables, and the action tables need configuration.
○ Memory: Ethertype table in stage 1, other tables spread out to maximize size.
○ Upon configuration, the control plane can start populating each table.

Case 2: RCP and ACL support

● Rate Control Protocol (RCP) and Access Control List (ACL) for firewalls.
○ RCP indicates explicitly fair-share rate to flows; stamped into RCP header.
○ 20K ACL entries (each 120b wide) created along with RAM entries to hold

associated actions, last 2 stages.

Chip Design

● 1GHz operating frequency lets a single pipeline process all input port data.
● Parsers accept packets, individual fields are moved from various locations to fixed

locations in a 4 Kb packet header vector. Results are multiplexed into a single
stream.

● Queuing system associated with common data buffer.
● Egress and ingress pipelines share same match tables -> minimizes cost.

Chip Design: Configurable Parser

● Parser: turns incoming packet data into 4k sized packet header vector.
● The result of a TCAM match triggers an action.

○ Updates parser state.
○ Shifts incoming data.
○ Directs fields in input packet to final output packet fixed positions.

Chip Design: Configurable Match Memories

● Each match stage has two wide match units: a TCAM for ternary matches and an
SRAM-based hash table for exact matches.

● Ingress, egress match pipelines are the same block! Uses a crossbar.
○ Packet headers shared between input, output vectors: ownership configured

to be either ingress or egress thread.
○ Function units per field allocated in the same way to ingress / egress.
○ Each memory block only allocated to either ingress / egress.

● Chip stores packet and byte statistics counters for each flow table entry.

Chip Design: Configurable Action Engine

● Separate processing unit provided for each packet header field.
● OpenFlow specifies simple actions and complex operations; complex ones have to

be flattened into single-cycle operations.
● Enumeration of a subset of instructions:

Chip Design: Other Notable Features

● Latencies reduced by dependency analysis.
● Multicast and ECMP processing is split between ingress and egress.
● Meters measure and classify flow rates of matching table entries, which are then

potentially used to modify or drop incoming packets.
● Version IDs flow through pipeline with each packet, allowing for version

compatibility to be checked for in matches.
● Note: short wiring drives success!

Cost Comparison

How does the proposed RMT design compare to a conventional switch chip?

Cost Comparison

How does the proposed RMT design compare to a conventional switch chip?

Programmable parser:

● Uses 256 x 40 bit TCAM and 256 x 128 bit action RAM

● 5.6 million gates (in comparison to 2.9 - 3 million for conventional design)

Cost Comparison

How does the proposed RMT design compare to a conventional switch chip?

Memory costs:

● Memory technology

○ Extra cost incurred by hash table, TCAMs

Cost Comparison

How does the proposed RMT design compare to a conventional switch chip?

Memory costs:

● Memory technology

● Action specification

○ Flow entries have overhead bits
for a pointer to action memory,
action size, etc.

○ Amount of overhead varies in
different configurations of
memory blocks

Cost Comparison

How does the proposed RMT design compare to a conventional switch chip?

Memory costs:

● Memory technology

● Action specification

○ Flow entries have overhead bits
for a pointer to action memory,
action size, etc.

○ Amount of overhead varies in
different configurations of
memory blocks

Flow table match width increases
Action, statistics capacity decreases
Flow entry density increases

Cost Comparison

How does the proposed RMT design compare to a conventional switch chip?

Memory costs:

● Memory technology

● Action specification

○ Flow entries have overhead bits
for a pointer to action memory,
action size, etc.

○ Amount of overhead varies in
different configurations of
memory blocks

Less action memory
More memory blocks for
match or statistics

Cost Comparison

How does the proposed RMT design compare to a conventional switch chip?

Memory costs:

● Memory technology

● Action specification

● Fragmentation costs

○ Reduce by allowing sets of flow

entries to be packed together

Cost Comparison

How does the proposed RMT design compare to a conventional switch chip?

Area and power costs:

● Large match table capacity contributes substantially to chip area estimates

Cost Comparison

How does the proposed RMT design compare to a conventional switch chip?

Area and power costs:

● Large match table capacity contributes substantially to chip area estimates

● Increased memory bitcount and increased functionality of match-action pipeline

dissipates more power

Summary

● Discussion question: What are the long-term benefits of programmable switches?

Summary

● Discussion question: What are the long-term benefits of programmable switches?

● This paper’s main contributions:

○ Describes RMT switch architecture

○ Proves that this architecture is realizable on proposed chip design

○ Greatly increased flexibility is possible at a cost of less than 15% increase

in area and power consumption of the chip!

Follow-Up Work

● RMT commercialized in Tofino switch by Barefoot Networks

● P4 is a standard language used for different programmable switching devices

● dRMT disaggregates the memory and compute resources of the switch

● Ongoing research still pushing the boundaries on leveraging the flexibility of RMT

