Forwarding Metamorphosis:
Fast Programmable Match-Action
Processing in Hardware for SDN

Presenters: Simran Kaur, Clover Zheng, Tamjeed Azad, Cindy Zhang

Recap: Software Defined Network (SDN)

Separates from data plane via open interface (e.g., Openflow)

Forwards packets through router

Recap: Software Defined Network (SDN)

Separates from data plane via open interface (e.g., Openflow)

Forwards packets through router

Openflow is based on the match-action approach

1. Match (subset of) packet headers to fixed headers in table
2. Matched entry specifies fixed action(s) to apply to packet

Match-action tables are implemented with switch chips for speed

Abstracting Matching Semantics

Single Match Table

e Single table that stores every combination of headers
e Wasteful

o Header behaviors might be orthogonal
o What if a match on the first header determines a disjoint set of values to match on second header?

Abstracting Matching Semantics

Single Match Table

e Single table that stores every combination of headers
e Wasteful

o Header behaviors might be orthogonal
o What if a match on the first header determines a disjoint set of values to match on second header?

Multiple Match Table (a refinement of SMT)

e Smaller match tables arranged into pipeline of stages
e Processing at current stage dependent on processing at previous stages

e Existing switch chips implement a small number of tables, but...
o Table width, depth, and execution order are fixed
o Often limited set of common actions (OpenFlow specifies a subset of these)

SDN with OpenFlow

Benefits: Control plane is programmable

Limitations: Data plane is not programmable.

Discussion question: What causes this limitation?
Why would we want programmability here?

SDN with OpenFlow

Benefits: Control plane is programmable

Limitations: Data plane is not programmable.

Discussion question: What causes this limitation?
Why would we want programmability here?

Possible answer:

e Source of limitation: current switch hardware + OpenFlow
o Match-action processing is on fixed set of fields
o Openflow limits packet processing actions

e What if you want the flexibility to...
o Add new headers (and match on them)
o Add new actions
o Tune table sizes to optimize for network

Motivating Question

Can we build a programmable switch (1) at a reasonable cost (2) without
sacrificing speed?

Motivating Question

Can we build a programmable switch (1) at a reasonable cost (2) without
sacrificing speed?

Reconfigurable Match Table (RMT)

e Use pipeline of match-action tables (like in MMT)
e More flexibility

o Add new headers (and match on them)
o Define new actions
o Configure number, topology, width, and depth of match tables

RMT Architecture

Techniques for flexibility:

Programmable parser and deparser
Match stage unit RAM configurability

Ingress/egress resource sharing

Allows multiple tables per stage

RMT Architecture

Logical Stage 1 Logical Stage N
S(mgiz d&‘:taat)e lStatistics| | State |
\ -
. o — — > g 9 Configurable
L] - =1 z Output
z : @ 17| Match — VLIW e Queues
g ' 8 |+ | Tables Action . o P I
Packets Prog.” > a g _ Packets
L 17 | - > nal " § -
1 . Parser —> > > 5 : 4_7:5
L @ .
[o) - L]
Input . & e . Output
Channels o i " Channels
K » 8 _ M LK,

(a) RMT model as a sequence of logical Match-Action stages.

Programmable parser

e Can be configured with any

o header fields and
o header orders

e OQutputs a packet header vector
o aset of header fields such as IP dest, Ethernet dest, etc

e Allow field definitions to be modified or added
e Programmable deparser recombines the modified header fields

Physical Physical Physical
Stage 1 Stage 2 Stage M

Match tables 1

The match-action pipeline consists of a series

of tables of programmable dimensions Logical Stage 1

e Each table is one stage of the pipeline
e Resources are shared across all stages "aa Logical

and can be allocated flexibly: 1 Stage N

Logical Stage 2
o more memory can be assigned with ;
multiple contiguous physical stages 11
IP forwarding: 256K 32-bit prefixes]
o Ethernet: 64K 48-bit addresses |

|]

: Ingress logical : Egress logical
match tables match tables

(b) Flexible match table configuration.

Match tables

The match-action pipeline consists of a series
of tables of programmable dimensions

Each table is one stage of the pipeline
Resources are shared across all stages
and can be allocated flexibly:

o Issues:

o Large number of physical stages inflates
power requirements
o Conflates processing and memory
allocation
m Alogical stage that requires more
processing get allocated 2 physical
stages, but it gets 2x memory even
though it may not need it =>
potential resource waste!

Physical Physical Physical
Stage 1 Stage 2 Stage M

e

Logical Stage 1

EEn Logical
" Stage N
Logical Stage 2
N
]
L
: Ingress logical : Egress logical
match tables match tables

(b) Flexible match table configuration.

Action

e Input selector picks the fields to be
matched upon, and VLIW—Very long
instruction word— modifies

o Operate on all fields in the header vector
concurrently

e An action unit for each field F in the
header vector
o Input: up to 3 arguments, including
fields in the header vector, the action
data results of the match
o Qutput: rewrite F.

e Theingress and egress side separated by
a switching fabric, but this distinction is
mainly logical rather than physical.

Packet
Header
Vector

| Src1
> Src2 < 5 S
> 5 Src3_ ~ 5
g.
A K =3 OPTcode
) : = :
= <] (from inst
0. S . —_
Packet Qs . w mem)
Header @ s 2 -
v & © 8 .
ector g -
-~ | Src1
g Src2 C g
> 2 > >3 5T
o Src3_ =3
| Action = A
Match M > ‘
m
Match , Results omaty OP|code

Tables |

‘Ctrl

VLIW Instruction Memory

(c) VLIW action architecture.

RMT Architecture Pros and Cons

Pros:

Factoring states leads to better

abstraction
o Developers can write programs
with a reasonably general “mental
model” of what the switch looks
like
o Programming language like P4
Minimize resource waste
Layout optimality
More actions than OpenFlow

Cons:
e Power consumption +15%
e Conflates processing and memory
e Match restrictions
o N=32?

Packet header limits

Action restrictions
e Still not Turing-complete

Use cases for RMT

e Two main use cases that we should highlight:
o L2/L3 switch.
o RCP and ACL support.

Case 1: L2/L3 switch

e Switching at either the Layer 2 level or the Layer 3 level.
o The parser, match tables, and the action tables need configuration.
o Memory: Ethertype table in stage 1, other tables spread out to maximize size.
o Upon configuration, the control plane can start populating each table.

Parse Graph Table Flow Graph Memory Allocation T—
(Ethernet) D B 42000 N ISP IEN Tables
(Ethertype) s dba []«Ethertype}
END [Z]4src Pont, Src MACY
\ [5] {Dst MAC}
7 AT {Dst IP}
IPv4 (IP route) @rc -MAG) DstMAC:, E(Src/Dst IP,
Action: Set lsrc/ds(MAC, Acﬂo\n: Send Action: Set IP Proso,
END decremil IPTTL to cont(fA output port 1 . D{chirC/Dst Port}
o @ >8
= Table Flow Graph
— Logical flow
. @ Forward to buffer
Stage: 1 2 32 O Drop packet

(a) L2/L3 switch.

Case 2: RCP and ACL support

e Rate Control Protocol (RCP) and Access Control List (ACL) for firewalls.
o RCP indicates explicitly fair-share rate to flows; stamped into RCP header.
o 20K ACL entries (each 120b wide) created along with RAM entries to hold
associated actions, last 2 stages.

Parse Graph Table Flow Graph

I

Action: Set src/dst MAC, decrement
IP TTL, insert OMPLS header (opt.),

set src/ist IP (opt.)

Action: Send Action: Set output port,
to controller insert OMPLS header (opt.)

Action: Set
queue ID

(tep) (upp)

RCP

Action: Clear
output port

Action: Update
RCP rate

O o
(b) RCP and ACL support.

Stage: 1 2 30 31 32

Wvd

WvOL

Chip Design

e 1GHz operating frequency lets a single pipeline process all input port data.

e Parsers accept packets, individual fields are moved from various locations to fixed
locations in a 4 Kb packet header vector. Results are multiplexed into a single
stream.

e (Queuing system associated with common data buffer.

e KEgress and ingress pipelines share same match tables -> minimizes cost.

queues
—————————— ,— — — — — qpacket [—_—_——————— — — — — — — — —
r Ingress processing | soime, /=N gsicrﬁ:tr | Egress processing !
Input Ch. 1\ |] i ,, o i ﬁenqueue) e ([deqiieue)] T v | ,Output Ch. 1
‘ Match Match | | Match Match I/
: L Ingress | » Stage | . Stage | >DIngress q T s |» Egress | » Stage | , | Stage | | Egress L
Parsers = eparser \ W=7y Pasars . Deparser |
Input Ch. 64 |), 1 32 | | 1 32 |\ Output Ch. 64
1 1 | \ »>
v ' ' 4 N » Common data buffer | | | | :
I_ _______________ _, packet packqt________________l
data data

Figure 3: Switch chip architecture.

Chip Design: Configurable Parser

e Parser: turns incoming packet data into 4k sized packet header vector.
e The result of a TCAM match triggers an action.

o Updates parser state.

o Shifts incoming data.

o Directs fields in input packet to final output packet fixed positions.

Header data * + Parser i
: Header Field , !
' | Identification | | Extraction |--'¢'9S !
i State & A Next Aficid = Placlsat I;Ieader -
! header | state locations 2 [Y8 o Mateh
: y data I | & i Engine
| .| Action ;
i TCAM I atch index | RAM !
I

Figure 4: Programmable parser model.

Chip Design: Configurable Match Memories

e FEach match stage has two wide match units: a TCAM for ternary matches and an
SRAM-based hash table for exact matches.
e Ingress, egress match pipelines are the same block! Uses a crossbar.
o Packet headers shared between input, output vectors: ownership configured
to be either ingress or egress thread.
o Function units per field allocated in the same way to ingress / egress.
o Each memory block only allocated to either ingress / egress.
e Chip stores packet and byte statistics counters for each flow table entry.

queues

—————————— — — — — —-packet /> [\ packet —— — " — - — ——— — —————
:_ Ingress processing | Pointer 4 ‘ \ pointer Egress processing ll outout O 1
A . > 1
Input Ch. 1 |\ | ﬁenqueue) (dequeue)|| .. | 0 | | Oultput Ch.
Match Match | Match Match
L Ingress | » Stage 5 &l Stage | 5l Ingress | I ~\. o A/ |+ Egress | » Stage | - Stage o Egress L
’ ||| Parsers = Deparser| | N R } Parsers . Deparser| |
Input Ch. 64 | | 1 32 I | 1 32 | \[Output Ch. 64
V | \

. packetN Common data buffer packqt |

data data

Figure 3: Switch chip architecture.

Chip Design: Configurable Action Engine

e Separate processing unit provided for each packet header field.

e OpenFlow specifies simple actions and complex operations; complex ones have to
be flattened into single-cycle operations.

e Enumeration of a subset of instructions:

Category Description

logical and, or, xor, not, ...
shadd/sub signed or unsigned shift

arith inc, dec, min, max
deposit-byte any length, source & dest offset

rot-mask-merge IPv4 <> IPv6 translation uses
bitmasked-set S1&S2 | S1&S5 ; metadata uses

move if E S1— D
cond-move if V5,&Vs, S1 = D
cond-mux if Vg, S2 > D else if Vs, S1 = D

Table 1: Partial action instruction set.
(S; means source i; V; means z is valid.)

Chip Design: Other Notable Features

e Latencies reduced by dependency analysis.

e Multicast and ECMP processing is split between ingress and egress.

e Meters measure and classify flow rates of matching table entries, which are then
potentially used to modify or drop incoming packets.

e Version IDs flow through pipeline with each packet, allowing for version
compatibility to be checked for in matches. -

° 171 1 ' age atcl ction
e Note: short wiring drives success! Seget amnldctnl oo

(a) Match dependency.

Stage 1 [Match | Action
Stage 2 Match | Action

(b) Action dependency.

Stage 1 | Match | Action |
Stage 2 Match | Action |

(c) No dependency or successor dependency.

Figure 5: Match stage dependencies.

Cost Comparison

How does the proposed RMT design compare to a conventional switch chip?

Cost Comparison

How does the proposed RMT design compare to a conventional switch chip?

Programmable parser:
e Uses 256 x 40 bit TCAM and 256 x 128 bit action RAM

e 5.6 million gates (in comparison to 2.9 - 3 million for conventional design)

.
EZZ] Result { E : S—
s Hr. Ident. /Field Extract, |-+ o o s RR——— — N
O3 Action RAM : ; g
He=y Tcam e T b s

Gates (x10°)
O NWPHOLO

Cost Comparison

How does the proposed RMT design compare to a conventional switch chip?
Memory costs:
e Memory technology
o Extra cost incurred by hash table, TCAMs

Cost Comparison

How does the proposed RMT design compare to a conventional switch chip?

Memory costs:

e Action specification

o Flow entries have overhead bits
for a pointer to action memory,

action size, etc. 2) b)
. . L___J : Binary match LI : Binary action - : Ternary action
O Amount Of Overhead varies in [stats =] : stats orbinary match [: Unused
different configurations of Case MatchWidth Match Action Stats Relative
a1 80 32 48 25 1.000x
memory blocks az 160 52 34 18 1.625x
as 320 72 22 12 2.250x
b 640 80 12 7 2.500x
c1 80 62 4 40 1.900x

c2 80 102 4 0 3.250x

Flow table match width increases

C (§) St C Omparis on Action, statistics capacity decreases

Flow entry density increases

How does the proposed RMT design compare to a conventional\witch chip?

Memory costs:

e Action specification

o Flow entries have overhead bits IRERRIERE

for a pointer to action memory, SIEARRRAN i FEEBERE

action size, etc. 2) b)
o . L___J : Binary match LI : Binary action - : Ternary action
O Amount Of Overhead varies in [:stats =] : stats orbinary match [: Unused
different configurations of Case MatchWidth Match Action Stats Relative
a1 80 32 48 25 1.000x
memory blocks az 160 52 34 18 1.625x
as 320 72 22 12 2.250x
b 640 80 12 7 2.500x
c1 80 62 4 40 1.900x

c2 80 102 4 0 3.250x

Less action memory

C oSt C Omparison More memory blocks for

match or statistics

How does the proposed RMT design compare to a conventional switch chip? /

Memory costs:

e Action specification

o Flow entries have overhead bits IRERRIERE | |

for a pointer to action memory, — |iieaaassd Lol

action size, etc. 2) b))
. . L___J : Binary match LI : Binary action - : Ternary action
O Amount Of Overhead varies in [:stats =] : stats orbinary match [: Unused
different configurations of Case MatchWidth Match Action Stats Relative
a1 80 32 48 25 1.000x
memory blocks az 160 52 34 18 1.625x
as 320 72 22 12 2.250x
b 640 80 12 7 2.500x
c1 80 62 4 40 1.900x

c2 80 102 4 0 3.250x

Cost Comparison

How does the proposed RMT design compare to a conventional switch chip?

Memory costs:

® Fragmentation costs RIS SR SR E R

o Reduce by allowing sets of flow])))
a C
entries to be packed together L l:Binarymatch | | :Binary action [: Temary action
[: stats =] : stats orbinary match [: Unused
Case MatchWidth Match Action Stats Relative
a1 80 32 48 25 1.000x
az 160 52 34 18 1.625x
as 320 72 22 12 2.250%
b 640 80 12 7 2.500x
c1 80 62 4 40 1.900x

c2 80 102 4 0 3.250x

Cost Comparison

How does the proposed RMT design compare to a conventional switch chip?

Area and power costs:

e Large match table capacity contributes substantially to chip area estimates

Section Area, Cost
10, buffer, queue, CPU, etc 37.0% 0.0%
Match memory & logic 54.3% 8.0%
VLIW action engine 7.4% 5.5%
Parser + deparser 1.3% 0.7%

Total extra cost: 14.2%

Cost Comparison

How does the proposed RMT design compare to a conventional switch chip?

Area and power costs:

e Increased memory bitcount and increased functionality of match-action pipeline

dissipates more power

Section Power Cost
/0 26.0% 0.0%
Memory leakage 43.7% 4.0%
Logic leakage 7.3% 2.5%
RAM active 2.7% 0.4%
TCAM active 3.5% 0.0%
Logic active 16.8% 5.5%

Total extra cost: 12.4%

Summary

e Discussion question: What are the long-term benefits of programmable switches?

Summary

e Discussion question: What are the long-term benefits of programmable switches?
e This paper’s main contributions:

o Describes RMT switch architecture

o Proves that this architecture is realizable on proposed chip design

o Greatly increased flexibility is possible at a cost of less than 15% increase

in area and power consumption of the chip!

Follow-Up Work

e RMT commercialized in Tofino switch by Barefoot Networks
e P4 isa standard language used for different programmable switching devices
e dRMT disaggregates the memory and compute resources of the switch

e Ongoing research still pushing the boundaries on leveraging the flexibility of RMT

