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Recap: Software Defined Network (SDN)

Separates control plane from data plane via open interface (e.g., Openflow)

Openflow is based on the match-action approach 

1. Match (subset of) packet headers to fixed headers in table
2. Matched entry specifies fixed action(s) to apply to packet   

Match-action tables are implemented with switch chips for speed

Makes routing decisions Forwards packets through router



Abstracting Matching Semantics

Single Match Table

● Single table that stores every combination of headers
● Wasteful

○ Header behaviors might be orthogonal
○ What if a match on the first header determines a disjoint set of values to match on second header?

Multiple Match Table (a refinement of SMT)

● Smaller match tables arranged into pipeline of stages
● Processing at current stage dependent on processing at previous stages 
● Existing switch chips implement a small number of tables, but…

○ Table width, depth, and execution order are fixed
○ Offer limited set of common actions (OpenFlow specifies a subset of these)
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● Single table that stores every combination of headers
● Wasteful

○ Header behaviors might be orthogonal
○ What if a match on the first header determines a disjoint set of values to match on second header?

Multiple Match Table (a refinement of SMT)

● Smaller match tables arranged into pipeline of stages
● Processing at current stage dependent on processing at previous stages 
● Existing switch chips implement a small number of tables, but…

○ Table width, depth, and execution order are fixed
○ Often limited set of common actions (OpenFlow specifies a subset of these)



SDN with OpenFlow

Benefits: Control plane is programmable

Limitations: Data plane is not programmable.

Discussion question: What causes this limitation?
                                              Why would we want programmability here? 
Hint: think about what you might want to change in a network

Possible answer: 
● Source of limitation: current switch hardware + OpenFlow

○ Match-action processing is on fixed set of fields
○ Openflow limits packet processing actions  

● What if you want the flexibility to…
○ Add new headers (and match on them)
○ Add new actions
○ Tune table sizes to optimize for network
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Can we build a programmable switch (1) at a reasonable cost (2) without 
sacrificing speed?



Motivating Question

Can we build a programmable switch (1) at a reasonable cost (2) without 
sacrificing speed?

Reconfigurable Match Table (RMT)

● Use pipeline of match-action tables (like in MMT)
● More flexibility

○ Add new headers (and match on them) 
○ Define new actions 
○ Configure number, topology, width, and depth of match tables



RMT Architecture

Techniques for flexibility: 

● Programmable parser and deparser

● Match stage unit RAM configurability 

● Ingress/egress resource sharing 

● Allows multiple tables per stage 



RMT Architecture

Parser                             Match-Action Stages             Deparser+output queues



Programmable parser

● Can be configured with any
○ header fields and 
○ header orders

● Outputs a packet header vector
○ a set of header fields such as IP dest, Ethernet dest, etc 

● Allow field definitions to be modified or added
● Programmable deparser recombines the modified header fields 



Match tables
The match-action pipeline consists of a series 
of tables of programmable dimensions 

● Each table is one stage of the pipeline
● Resources are shared across all stages 

and can be allocated flexibly: 
○ more memory can be assigned with 

multiple contiguous physical stages
○ IP forwarding: 256K 32-bit prefixes
○ Ethernet: 64K 48-bit addresses 



Match tables
The match-action pipeline consists of a series 
of tables of programmable dimensions 

● Each table is one stage of the pipeline
● Resources are shared across all stages 

and can be allocated flexibly: 
● Issues:

○ Large number of physical stages inflates 
power requirements 

○ Conflates processing and memory 
allocation
■ A logical stage that requires more 

processing get allocated 2 physical 
stages, but it gets 2x memory even 
though it may not need it  => 
potential resource waste!



Action

● Input selector picks the fields to be 
matched upon, and VLIW–Very long 
instruction word– modifies
○ Operate on all fields in the header vector 

concurrently
● An action unit for each field F in the 

header vector
○ Input: up to 3 arguments, including 

fields in the header vector, the action 
data results of the match

○ Output: rewrite F. 
● The ingress and egress side separated by 

a switching fabric, but this distinction is 
mainly logical rather than physical. 



RMT Architecture Pros and Cons

Pros:

● Factoring states leads to better 
abstraction
○ Developers can write programs 

with a reasonably general “mental 
model” of what the switch looks 
like

○ Programming language like P4

● Minimize resource waste
● Layout optimality
● More actions than OpenFlow

Cons:

● Power consumption +15% 
● Conflates processing and memory
● Match restrictions

○ N=32?
● Packet header limits
● Action restrictions
● Still not Turing-complete



Use cases for RMT

● Two main use cases that we should highlight:
○ L2/L3 switch.
○ RCP and ACL support.



Case 1: L2/L3 switch

● Switching at either the Layer 2 level or the Layer 3 level.
○ The parser, match tables, and the action tables need configuration.
○ Memory: Ethertype table in stage 1, other tables spread out to maximize size.
○ Upon configuration, the control plane can start populating each table.



Case 2: RCP and ACL support 

● Rate Control Protocol (RCP) and Access Control List (ACL) for firewalls.
○ RCP indicates explicitly fair-share rate to flows; stamped into RCP header.
○ 20K ACL entries (each 120b wide) created along with RAM entries to hold 

associated actions, last 2 stages.



Chip Design

● 1GHz operating frequency lets a single pipeline process all input port data.
● Parsers accept packets, individual fields are moved from various locations to fixed 

locations in a 4 Kb packet header vector. Results are multiplexed into a single 
stream.

● Queuing system associated with common data buffer.
● Egress and ingress pipelines share same match tables -> minimizes cost.



Chip Design: Configurable Parser

● Parser: turns incoming packet data into 4k sized packet header vector.
● The result of a TCAM match triggers an action.

○ Updates parser state.
○ Shifts incoming data.
○ Directs fields in input packet to final output packet fixed positions.



Chip Design: Configurable Match Memories

● Each match stage has two wide match units: a TCAM for ternary matches and an 
SRAM-based hash table for exact matches.

● Ingress, egress match pipelines are the same block! Uses a crossbar.
○ Packet headers shared between input, output vectors: ownership configured 

to be either ingress or egress thread.
○ Function units per field allocated in the same way to ingress / egress.
○ Each memory block only allocated to either ingress / egress. 

● Chip stores packet and byte statistics counters for each flow table entry.



Chip Design: Configurable Action Engine

● Separate processing unit provided for each packet header field.
● OpenFlow specifies simple actions and complex operations; complex ones have to 

be flattened into single-cycle operations.
● Enumeration of a subset of instructions:



Chip Design: Other Notable Features

● Latencies reduced by dependency analysis.
● Multicast and ECMP processing is split between ingress and egress.
● Meters measure and classify flow rates of matching table entries, which are then 

potentially used to modify or drop incoming packets.
● Version IDs flow through pipeline with each packet, allowing for version 

compatibility to be checked for in matches.
● Note: short wiring drives success!
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How does the proposed RMT design compare to a conventional switch chip?



Cost Comparison

How does the proposed RMT design compare to a conventional switch chip?

Programmable parser:

● Uses 256 x 40 bit TCAM and 256 x 128 bit action RAM

● 5.6 million gates (in comparison to 2.9 - 3 million for conventional design)



Cost Comparison

How does the proposed RMT design compare to a conventional switch chip?

Memory costs:

● Memory technology

○ Extra cost incurred by hash table, TCAMs
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different configurations of 
memory blocks
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Cost Comparison

How does the proposed RMT design compare to a conventional switch chip?

Memory costs:

● Memory technology

● Action specification 

○ Flow entries have overhead bits 
for a pointer to action memory, 
action size, etc.

○ Amount of overhead varies in 
different configurations of 
memory blocks

Less action memory
More memory blocks for 
match or statistics



Cost Comparison

How does the proposed RMT design compare to a conventional switch chip?

Memory costs:

● Memory technology

● Action specification 

● Fragmentation costs

○ Reduce by allowing sets of flow 

entries to be packed together 
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● Large match table capacity contributes substantially to chip area estimates



Cost Comparison

How does the proposed RMT design compare to a conventional switch chip?

Area and power costs:

● Large match table capacity contributes substantially to chip area estimates

● Increased memory bitcount and increased functionality of match-action pipeline 

dissipates more power 



Summary

● Discussion question: What are the long-term benefits of programmable switches?



Summary

● Discussion question: What are the long-term benefits of programmable switches?

● This paper’s main contributions:

○ Describes RMT switch architecture

○ Proves that this architecture is realizable on proposed chip design

○ Greatly increased flexibility is possible at a cost of less than 15% increase 

in area and power consumption of the chip!



Follow-Up Work

● RMT commercialized in Tofino switch by Barefoot Networks

● P4 is a standard language used for different programmable switching devices

● dRMT disaggregates the memory and compute resources of the switch 

● Ongoing research still pushing the boundaries on leveraging the flexibility of RMT


